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Introduction (1)

Almost all Krylov methods fall in one of the following two classes:

1. Residuals are explicitly generated that satisfy some

desirable property. Examples are: CG, CR, BiCG,

BiCGSTAB, GCR, IDR(s) etc. The approximate solution is

obtained as a side product.

2. A basis for the Krylov subspace is explicitly generated using

a Hessenberg relation. The approximate solution is

computed using the (partial) Hessenberg decomposition.

Examples are: GMRES, FOM, QMR, etc.
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Introduction (2)

The distinction is algorithmic rather than mathematical,

mathematically equivalent methods exists from both classes

(e.g. GMRES and GCR).

For the second class the residual is normally not available, which

gives them a less natural, less elegant flavour (personal opinion).

The main advantage, however, is the explicit availability of the

partial Hessenberg decomposition, which makes extension for

solving other types of problems often quite straightforward.

For example, it is trivial to calculate approximate eigenvalues

with GMRES, or to use GMRES to solve a sequence of shifted

systems. The same is true for QMR.
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Introduction (3)

In this talk we present an IDR-based method of the second type,

i.e. IDR is used to make a partial Hessenberg decomposition.

The aim is to derive a flexible IDR method (cf. flexible GMRES),

and a multishift IDR method (cf. multishift GMRES).

To computed the ’IDR basis vectors’ we use orthogonalisation

when possible, and to compute approximate solutions we use

quasi-minimization, which results in GMRES-like algorithms that

still use short recurrences.
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IDR Hessenberg relation (1)
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IDR Hessenberg relation (1)

• IDR(s) constructs vectors that are in a sequence of nested

subspace Gj of shrinking dimension.
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IDR Hessenberg relation (1)

• IDR(s) constructs vectors that are in a sequence of nested

subspace Gj of shrinking dimension.

• The main steps are as follows:

- Compute vector v ∈ Gj−1 ⊥ p1, · · · ,ps;

- Compute vector g ∈ Gj : g = (I − ωjA)v.
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IDR Hessenberg relation (1)

• IDR(s) constructs vectors that are in a sequence of nested

subspace Gj of shrinking dimension.

• The main steps are as follows:

- Compute vector v ∈ Gj−1 ⊥ p1, · · · ,ps;

- Compute vector g ∈ Gj : g = (I − ωjA)v.

• To compute a vector ∈ Gj , s + 1 vectors ∈ Gj−1 are needed.
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IDR Hessenberg relation (1)

• IDR(s) constructs vectors that are in a sequence of nested

subspace Gj of shrinking dimension.

• The main steps are as follows:

- Compute vector v ∈ Gj−1 ⊥ p1, · · · ,ps;

- Compute vector g ∈ Gj : g = (I − ωjA)v.

• To compute a vector ∈ Gj , s + 1 vectors ∈ Gj−1 are needed.

• Intermediate vectors ∈ Gj are not unique. For stability they

can be orthonormalised wrt the vectors ∈ Gj .
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IDR Hessenberg relation (2)

The vectors g satisfy a generalised Hessenberg relation.

AVn = Gn+1Hn Vn = GnCn

with

• Gn = [g1, · · · gn];

• Vn = [v1, · · ·vn];

• Cn: n × n upper triangular;

• Hn: (n + 1) × n extended Hessenberg, with upper

bandwidth s.
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Solution by quasi-minimisation

For solving a linear system Ax = b we take g1 = 1
‖b‖

b and

search for a solution

xn = Vnyn

by minimising the residual norm:

min
yn

‖b − AVnyn‖ ⇔ min
yn

‖Gn+1(‖b‖e1 − Hnyn)‖

We ’quasi-minimise’ this expression by solving

min
yn

‖‖b‖e1 − Hnyn‖
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Some remarks

• The derivation of the algorithm is analogous to GMRES and

QMR.

• As in QMR, the algorithm can be implemented using short

recurrences (of length s + 2) only.

• Since the initial s vectors gi form an orthonormal set, our

QMRIDR(s) variant is mathematically equivalent to GMRES

in the first s iterations.

• An earlier QMRIDR method was proposed by Du, Sogabe,

and Zhang (JCAM, 2011), aiming to obtain smoother

convergence. Their algorithm is based on the ’prototype’

IDR algorithm, and is not mathematically equivalent to

GMRES in the first s steps.
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Flexible QMRIDR(s) (1)

If right-preconditioning is used, the Hessenberg relation

becomes

AP−1Vn = Gn+1Hn

or

AZn = Gn+1Hn, Zn = P−1Vn .

If a variable preconditioner P−1
n is used, this relation still holds.

Zn is then defined by

Zn = [P−1
1 v1, · · · ,P−1

n vn]
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Flexible QMRIDR(s) (2)

To find an approximate solution xn put

xn = Znyn

and follow the ’quasi-minimisation’ procedure explained before.

In the first s steps Flexible QMRIDR(s) is mathematically

equivalent with FGMRES.



NWO-JSPS Seminar, Delft, April 10-13, 2012 12

Geophysical example

The test problem models propagation of a sound wave with

frequency f in the earth crust. It mimics three layers with a

simple heterogeneity.

8

>

>

<

>

>

:

−∆p − ( 2πf
c(x)

)2p = s, in Ω = (0, 600) × (0, 1000) m2

s = δ(x1 − 300, x2), x1 = (0, 600), x2 = (0, 1000)

with Neumann conditions ∂p
∂n

= − 2πif
c

p on Γ ≡ ∂Ω.
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Discretisation and preconditioning

Discretisation with Finite Element Method gives system

(K− z1M)u = f .

System matrix is indefinite → difficult for iterative methods.

We use the Shifted Laplace preconditioner

P = K− z2M

with z2 = −i|z1| (Erlangga, Vuik and Oosterlee, 2004, 2006)
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Shifted Laplace preconditioner (2)

In practice, a cheap approximation of P−1 is used.

The idea behind the shifted Laplace preconditioner is that this

matrix is much easier to approximate than the discrete

Helmholtz operator.

Erlangga et al. used one geometric multigrid cycle to

approximate the inverse of P.

The MG-method we use is AGMG, by Notay (ETNA, 2010).

AGMG uses a so-called K-cycle multigrid scheme, which uses a

Krylov solver at each level. As a consequence, the outer

iteration has to be a flexible Krylov method.
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Example

In the experiment we use the following parameters:

• z = (2πf)2, f = 8Hz.

• h = 12.5m.

• 3700 equations.
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Convergence for increasing s
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Observations

• Convergence curve for s = 128 coincides with FGMRES.

• Convergence improves for larger s (for this example, not

true in general if preconditioner is very variable).

• General remark: for more variable preconditioner it is often

better to use a small value for s.
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The multiple-frequency problem

In practice, often a sequence of systems at different frequencies

has to be solved:

(A − ziI)xzi = b, i = 1, nz

A number of Krylov methods for this problems exist, e.g.

• Multishift BiCG, Bi-CGSTAB, BiCGstab(ℓ) (Jegerlehner,

1996, Frommer 2002)

• Multishift QMR (Freund, 1994)

• Restarted GMRES (Frommer and Glassner, 1998), FOM

(Simoncini, 2003)

• CGLS (Van den Eshof, Sleijpen, 2004)
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Multishift QMRIDR(s)

To solve shifted system (A − ziI)xzi = b we use again

AVn = Gn+1Hn .

We search for a solution

xzi
n = Vnyzi

n .

The norm of the residual of the shifted system is

’quasi-minimised’:

min
yzi

n

‖b − (A − ziI)Vnyzi
n ‖ ⇔ min

yzi
n

‖‖b‖e1 − (Hn − ziCn)yzi
n ‖

Here Cn is Cn with a zero row appended.
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Remarks

The only difference between our QMRIDR(s) and multishift

QMRIDR(s) is that the quasi-minimisation is performed on

(small) shifted Hessenberg systems. The solutions to the large

shifted systems are computed using short recurrences.

• Computation of Hessenberg decomposition is the same as

for QMRIDR(s) → requires one matvec per iteration plus 3s

vector operations (inner product or update), and storage for

s + 1 g vectors.

• Computation of solution vectors for the shifted systems

requires for each shift s + 1 update vectors. Computational

cost consists of nz(s + 2) vector updates plus scalar

operations.
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Geophysical example (continued)

We again consider the geophysical test problem, and write it as

a sequence of shifted problems.

(M−1K− ziI)xzi = M−1b

We consider four shifts zi = (2πf)2, with f = 1, 2, 4, 8.
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Convergence multi-frequency problem
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Observations

• Multishift-QMRIDR works ’okay’ for this problem, better for

higher s

• Problem too ill-conditioned, needs a preconditioner

• How to apply a preconditioner with a multishift method is an

open problem
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A convection-diffusion-reaction problem

−ǫ∆u + ~β · ∇u − ru = F

with homogeneous Dirichlet conditions on the unit cube.

F is defined by u(x, y, z) = x(1 − x)y(1 − y)z(1 − z).

• Central differences discretisation

• h = 0.025 → 60,000 equations

• ǫ = 1

• ~β = (0/
√

5 250/
√

5 500/
√

5)T

• r = 0, 100, 200, 300, 400

Matrix is nonsymmetric and indefinite
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Convergence multishift QMRIDR
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Concluding remarks

• We have described a flexible and a multishift variant of

IDR(s).

• Flexible QMRIDR close to FGMRES, equivalent for s large

• Multishift QMRIDR(s) works quite well for well-conditioned

problems

More information (report):

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
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