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e Introduction

® GMRES(m) method [Y. Saad and M. H. Schultz:1986]
-- Algorithm (focus on restart)

: Algorithm : GMRES(m)

L Lm
Axr = 0b ’

Run m tterations of GMRES i
Input: g , Output: Xy, ;

-- Update the initial guess

0 -— Lm
[ : number of restart cycle
o -—Tm
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e Introduction

® GMRES(m) method [Y. Saad and M. H. Schultz:1986]

-- Residual polynomials

[ - number of restart
) = B3 (A)rd)

o _p| P (N): residual polynomial
0t T8 =8 e

= P (AP (A)--- Py (A)rg
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Introduction

® GMRES(m) method with readjustment
-- Numerical result compared with GMRES(m) method
: parameters b=[1,1,...,1]", 20 =[0,0,...,0]T,m = 30
— GMRES(m) — GMRES(m) with readjustment
CAVITYOQS | | XENON]

Readjustment leads better convergence

000000000000000

How do we readjust the function s.t. the roots are moved?
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® [ook-Back GMRES(m) method

-- Algorithm (focus on update the 1nitial guess)

Algorlthm Look-Back GMRES(m) <

I

MO OMOY

:1:0 wmi w® = 2 4y 4 02
uD = arg min 5 — pAw®));
Axr = 0b
Run m iterations of GMRES i
Input: g, Outp Xy, i

‘ We can easily complete the readjustment I
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Introduction

® [ook-Back GMRES(m) method
-- Extension of the GMRES(m) method

x{) = 2l » xf) 1= 2l 4 4O

— Analyze based on error equations

-- A Look-Back technique of restart

NMONSNOMO] [,wa) _ 0Dy D)y 3-2) J
2

1D = arg min 18D — i Aw @)

— Analyze based on residual polynomials
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Extension ot the GMRES(72) method

® Analysis based on error equations
-- Introduction of error eq. and iterative refinement scheme

Definition : error equation

Let X and X be the exact solution and the numerical solution respectively.
Then the error vector ¢.— X — X can be computed by solving the so-called
error equation, ie.,

AN

Ae= 7,

where 1" is residual vector corresponding to X.

Definition : iterative refinement scheme

The technique based on solving error equations recursively to achieve the
higher accuracy of the numerical solution is called the iterative refinement
scheme.
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S Extension ot the GMRES(72) method

i Algorithm : Extension of GMRES(m) !

on = Ty + y<|

Algorithm : GMRES(m)

i_mO i— CBm<—I

0 T,

Axr = 0b
Run m tterations of GMRES
Input: g , Output:2 4y,

L Lm
Axr = 0b
Run m tterations of GMRES
Input: g, Output: Xy,

Algorithm : Iterative refinement

Input: ey , Output: ey, Input: €(y, Output: ey,

1
J— 1
. €0O-—Y ¥ Em
i i i Ae = Tm i
i Run m iterations of GMRES : i Run m iterations of GMRES i
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AslBookeBack technique ot restart

® Difference between GMRES(m) and i1ts Extension

Extension of GMRES(m) method

I
w(()l) = :Br,(?l@_l) + y(l) | "’7(le) — PT%)(A)(TT()’ZL—U _ Ay(l))
- number of restart | Bg»f)()\) : residual polynomial

|
If we set y(l) e n(A, frél)) . Then the rational
function QW ()) s.t.

QW (Al = riY — ay®

Is exist.
| _
L e = PR QW (e
|
a:(()l) = a:gfl) | rq(ylb) = P,%l)(A)r#L_l)
|
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AslBookeBack technique ot restart

® Difference between GMRES(m) and i1ts Extension

Extension of GMRES(m) method

I
2 =20y 0 = PP Y
- number of restart | Pf,%l)()\) : residual polynomial

Look-Back GMRES(m) method

I
yD = 4711 - QW () : Set @Y (\) by Look-Back technique
[
xf) =2 L =Y
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AslBoekel3ack technique of restart

® A Look-Back technique

Extension of GMRES(m) method

Set Q1)) by Look-Back technique

Look-Back strategy
riw = Pa (AQV (A)r ™Y
r® = PO ()0 (1) PV (4)Qt-D(4) - . P ()M (4)rD

RW(A)

Look-Back at the past polynomials and rational functions R (1)

— ReadjustR()\) s.t. root is moved

Apr 10, 2012 Delft University of Technology




AslBookeBack technique ot restart

® A Look-Back technique

Extension of GMRES(m) method

OL) RO =rORrM) — (w10 — 1)

QWY =70 - W - @V

Root of the function 1s moved
(0—0)

\

It 1s expected that readjustment leads
to be high convergence
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AslBookeBack technique ot restart

® A Look-Back technique

Extension of GMRES(m) method
Look-Back GMRES(m) method

y® = 4711 - QW (a))rii ™V
QWY =70 - W - @V

e.g.
RO = PP QD ei2 o)

) (I-1) (1-1) (1-2)
(1) = [, (Dapy(D) ° o y(l 1) o
y — K 9 ,LL(l) arg m'uin ||'rm_ . “Aw(l)HQ
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AslPoekeBack technigue of restart

® Proposal of Look-Back GMRES(m) method

-- Algorithm (focus on update the 1nitial guess)

Algorlthm Look-Back GMRES(m) %

WO Ty

OB OMO)

aj Ponh | [ w® = 2570 40D 4 207
0 T, W 1) 0
pr’ = argmin||ry, 7 — pAw||
Axr = 0b :

Run m tterations of GMRES
Inperg , Outp@yy,

-- extra costs for Look-Back technique
: 1 matrix-vector multiplication per 1 restart
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SSNumerical expeniments

® Test pI’ObleS [obtained from UF Sparse Matrix Collection]
-- CAVITYO05, CAVITY 16, CHIPCOQLDO,

MEMPLUS, NS3DA, RAJATO3,
RDB5000, XENONI, XENON?2.

® Compared methods (without preconditioner)
-- GMRES(m) method

=30, 100
-- Look-Back GMRES(m) method (m )
® Parameters
-- right-hand-side . b=[1,1,...,1]"
-- initial guess . 20 =1[0,0,...,0]"
-- stopping criterion :lrll2/1bll2 < 10710

® Experimental conditions

-- AMD Phenom II X4 940 (3.0GHz);
-- Standard Fortran 77 using double precision.
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sNUmerical experiments

— GMRES(m) — Look-Back GMRES(m)

® Numerical results for m = 30
CAVITYO05 CAVITY16 C 0
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sNUmerical experiments

— GMRES(m) — Look-Back GMRES(m)

® Numerical results for m = 100
CAVITYO05 CAVITY16 C

aaaaaaaaaaaaaaaaaaaaaaaaaa
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SINumerical experiments

® Test problems

-- From discretization of partial differential equation of the form

—(A(z, y)uz)z—(A(z, y)uy) et exp(2(z®+y2))us = F(z,y)
over the unit square (z,y) € (0,1) x (0,1).
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S\Umerical experiments

® Numerical results (m=10) — GMRES(m) — Look-Back GMRES (m)
a=0 | | | a=0.5
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(@onclusion and Euture works

® Conclusion

-- In this talk, from analysis based on residual polynomials, we
proposed the Look-Back GMRES(m) method.

-- From our numerical experiments, we learned that the Look-
Back GMRES(m) method shows a good convergence than the
GMRES(m) method 1n many cases.

-- Therefore the Look-Back GMRES(m) method will be an
efficient variant of the GMRES(m) method.

® Future works

-- Analyze details of the Look-Back technique.
-- Compare with other techniques for the GMRES(m) method.
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