Look-Back GMRES(m) for Solving Large Nonsymmetric Linear Systems

Shao-Liang ZHANG[†], Akira IMAKURA[‡] & Tomohiro Sogabe^{*}

*Nagoya University, Japan
 *University of Tsukuba, Japan
 *Aichi-Prefectural University, Japan

Apr 10, 2012

GMRES(*m*) method [Y. Saad and M. H. Schultz:1986]
 -- Algorithm (focus on restart)

-- Update the initial guess

$$egin{aligned} x_0^{(l)} &:= x_m^{(l-1)} \ r_0^{(l)} &:= r_m^{(l-1)} \end{aligned}$$

l : number of restart cycle

• GMRES(m) method [Y. Saad and M. H. Schultz:1986]

-- Residual polynomials

$$r_m^{(l)} = P_m^{(l)}(A) r_0^{(l)}$$

= $P_m^{(l)}(A) r_m^{(l-1)}$ $r_0^{(l)} := r_m^{(l-1)}$

l : number of restart $P_m^{(l)}(\lambda)$: residual polynomial $(P_m^{(l)}(0) = 1)$

$$= P_m^{(l)}(A) P_m^{(l-1)}(A) \cdots P_m^{(1)}(A) r_0^{(1)}$$

Motivation

Question

How do we readjust the function s.t. the roots are moved?

We can easily complete the readjustment

• Look-Back GMRES(*m*) method

-- Extension of the GMRES(*m*) method

$$x_0^{(l)} := x_m^{(l-1)}$$
 $rac{l}{p}$ $x_0^{(l)} := x_m^{(l-1)} + y^{(l)}$

→ Analyze based on error equations

-- A Look-Back technique of restart

$$y^{(l)} = \mu^{(l)} w^{(l)}, \quad \begin{cases} w^{(l)} = z_m^{(l-1)} + y^{(l-1)} + z_m^{(l-2)} \\ \mu^{(l)} = \arg\min_{\mu} ||r_m^{(l-1)} - \mu A w^{(l)}||_2 \end{cases}$$

→ Analyze based on residual polynomials

Extension of the GMRES(*m*) method

• Analysis based on error equations

-- Introduction of error eq. and iterative refinement scheme

Definition : error equation

Let \hat{x} and \hat{x} be the exact solution and the numerical solution respectively. Then the error vector $e := x - \hat{x}$ can be computed by solving the so-called error equation, *i.e.*,

 $A \boldsymbol{e} = \widehat{\boldsymbol{r}},$

where \widehat{r} is residual vector corresponding to \widehat{x} .

Definition : iterative refinement scheme

The technique based on solving error equations recursively to achieve the higher accuracy of the numerical solution is called the **iterative refinement** scheme.

• Difference between GMRES(*m*) and its Extension

Extension of GMRES(m) method

$$x_{0}^{(l)} := x_{m}^{(l-1)} + y^{(l)}$$

$$l: number of restart$$

$$r_{m}^{(l)} = P_{m}^{(l)}(A)(r_{m}^{(l-1)} - Ay^{(l)})$$

$$P_{m}^{(l)}(\lambda) : residual polynomial$$

$$If we set y^{(l)} \in \mathscr{K}_{n}(A, r_{0}^{(1)}). \text{ Then the rational}$$

$$function Q^{(l)}(\lambda) \text{ s.t.}$$

$$Q^{(l)}(A)r_{m}^{(l-1)} = r_{m}^{(l-1)} - Ay^{(l)}$$
is exist.
$$r_{m}^{(l)} = P_{m}^{(l)}(A)Q^{(l)}(A)r_{m}^{(l-1)}$$
SMRES(m) method
$$r_{m}^{(l)} := x_{m}^{(l-1)}$$

$$r_{m}^{(l)} = P_{m}^{(l)}(A)r_{m}^{(l-1)}$$

• Difference between GMRES(*m*) and its Extension

Extension of GMRES(*m*) method

$$x_{0}^{(l)} := x_{m}^{(l-1)} + y^{(l)}$$

$$l: \text{ number of restart}$$

$$r_{m}^{(l)} = P_{m}^{(l)}(A)Q^{(l)}(A)r_{m}^{(l-1)}$$

$$P_{m}^{(l)}(\lambda) : \text{ residual polynomial}$$

$$P_{m}^{(l)}(\lambda) : \text{ residual polynomial}$$

$$p_{m}^{(l)}(\lambda) = A^{-1}(I - Q^{(l)}(A))r_{m}^{(l-1)}$$
Set $Q^{(l)}(\lambda)$ by Look-Back technique

GMRES(*m*) method

$$x_0^{(l)} := x_m^{(l-1)}$$
 $r_m^{(l)} = P_m^{(l)}(A)r_m^{(l-1)}$

.

• A Look-Back technique

Extension of GMRES(m) method

Look-Back GMRES(*m*) method

$$Q^{(l)}(\lambda) R^{(l)}(\lambda) = \tau^{(l)} R^{(l)}(\lambda) - (\tau^{(l)} - 1)$$
$$Q^{(l)}(\lambda) = \tau^{(l)} - (\tau^{(l)} - 1)(R^{(l)}(\lambda))^{-1}$$

Motivation

Root of the function is moved $(\circ \rightarrow \circ)$

It is expected that readjustment leads to be high convergence

Apr 10, 2012

• A Look-Back technique Extension of GMRES(*m*) method Look-Back GMRES(m) method $y^{(l)} = A^{-1}(I - Q^{(l)}(A))r_m^{(l-1)}$ $Q^{(l)}(\lambda) = \tau^{(l)} - (\tau^{(l)} - 1)(R^{(l)}(\lambda))^{-1}$ e.g. $R^{(l)}(\lambda) = P_m^{(l-1)}(\lambda)Q^{(l-1)}(\lambda)P_m^{(l-2)}(\lambda)$ $y^{(l)} = \mu^{(l)} w^{(l)}, \quad \left(egin{matrix} w^{(l)} &= z_m^{(l-1)} + y^{(l-1)} + z_m^{(l-2)} \ \mu^{(l)} &= rg\min_{\mu} ||r_m^{(l-1)} - \mu A w^{(l)}||_2 \end{array} ight)$

Apr 10, 2012

-- extra costs for Look-Back technique

: 1 matrix-vector multiplication per 1 restart

Numerical experiments

• Test problems [obtained from UF Sparse Matrix Collection]

- CAVITY05,	CAVITY16,	CHIPCOOL0
MEMPLUS,	NS3DA,	RAJAT03,
RDB5000,	XENON1,	XENON2.

• Compared methods (without preconditioner)

- -- **GMRES**(*m*) method
- -- Look-Back GMRES(*m*) method

(m = 30, 100)

• Parameters

- -- right-hand-side -- initial guess -- stopping criterion $\begin{array}{l} \cdot b = [1, 1, \dots, 1]^{\top} \\ \cdot x_0 = [0, 0, \dots, 0]^{\top} \\ \cdot \|r\|_2 / \|b\|_2 \le 10^{-10} \end{array}$
- Experimental conditions
 - -- AMD Phenom II X4 940 (3.0GHz);
 - -- Standard Fortran 77 using double precision.

Apr 10, 2012

Delft University of Technology

16/29

Apr 10, 2012

Delft University of Technology

17/29

Numerical experiments

• Test problems -- From discretization of partial differential equation of the form $-(A(x,y)u_x)_x - (A(x,y)u_y)_x + \alpha \exp(2(x^2+y^2))u_x = F(x,y))$ over the unit square $(x,y) \in (0,1) \times (0,1)$.

Apr 10, 2012

Numerical experiments

• Numerical results (m=10) - GMRES(m) - Look-Back GMRES(m)

Apr 10, 2012

Conclusion and Future works

Conclusion

- -- In this talk, from analysis based on residual polynomials, we proposed the Look-Back GMRES(*m*) method.
- -- From our numerical experiments, we learned that the Look-Back GMRES(*m*) method shows a good convergence than the GMRES(*m*) method in many cases.
- -- Therefore the Look-Back GMRES(*m*) method will be an efficient variant of the GMRES(*m*) method.
- Future works
 - -- Analyze details of the Look-Back technique.
 - -- Compare with other techniques for the GMRES(*m*) method.