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Solve Ax = b for x. A is n× n non-singular (complex).



Krylov subspace methods
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• Expansion.

Built a Krylov subspace Kk(A,b)

• Extraction.

Extract an approximate solution xk from Kk(A,b)
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Extraction quality depends on specific method

practical issues as efficiency, stability
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s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Terminology. R̃ is called

the initial shadow residual or

the IDR test matrix



s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Definition.

• Block Krylov subspace of order k generated by A∗ and R̃

Kk(A
∗, R̃) ≡





∑

j<k

(A∗)j R̃ γj | γj ∈ Cs







s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Definition.

• Block Krylov subspace of order k generated by A∗ and R̃

Kk(A
∗, R̃) ≡





∑

j<k

(A∗)j R̃ γj | γj ∈ Cs





Example.

Bi-CG generates residuals rBi-CG
k ⊥ Kk(A

∗, r̃0),

here R̃ = [r̃0]:

rBi-CG
k+1 = rBi-CG

k −Aukαk ⊥ Kk+1(A
∗, r̃0)

with uk such that Auk ⊥ Kk(A
∗, r̃0).



s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Definition. Pk polynomial of exact degree k.

• Pk Sonneveld subspace order k generated by A and R̃

S(Pk,A, R̃) ≡
{
Pk(A)v | v ⊥ Kk(A

∗, R̃)
}



s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Definition. Pk polynomial of exact degree k.

• Pk Sonneveld subspace order k generated by A and R̃

S(Pk,A, R̃) ≡
{
Pk(A)v | v ⊥ Kk(A

∗, R̃)
}

Example. R̃ = [ r̃0 ], rBi-CGSTAB
k = Pk(A)rBi-CG

k

Note that rBi-CG
k ⊥ Kk(A

∗, r̃0).

In Bi-CGSTAB: Pk+1(λ) = (1− ωkλ)Pk(λ),

where, with r′k ≡ Pk(A)rBi-CG
k+1 ,

ωk ≡ argminω∈C‖r′k − ωAr′k‖2

Theorem. rBi-CGSTAB
k ∈ S(Pk,A, r̃0).



s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Definition. Pk polynomial of exact degree k.

• Pk Sonneveld subspace order k generated by A and R̃

S(Pk,A, R̃) ≡
{
Pk(A)v | v ⊥ Kk(A

∗, R̃)
}

[Sonneveld, van Gijzen, 2008, S. Sonneveld, van Gijzen 2010]

Property. Bi-CGSTAB ∼ IDR(s) for s = 1 (i.e. R = [r̃0])
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s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Definition. Pk polynomial of exact degree k.

• Pk Sonneveld subspace order k generated by A and R̃

S(Pk,A, R̃) ≡
{
Pk(A)v | v ⊥ Kk(A

∗, R̃)
}

IDR Theorem. With Pk+1(λ) ≡ (α− ωλ)Pk(λ), ω 6= 0

• (αI− ωA)
(
S(Pk,A, R̃) ∩ R̃

⊥)
= S(Pk+1,A, R̃)

• S(Pk+1,A, R̃) ⊂ S(Pk,A, R̃)

• $ if A has no eigenvector in R̃
⊥

and S(Pk,A, R̃) 6= {0}.
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• $ if A has no eigenvector in R̃
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and S(Pk,A, R̃) 6= {0}.

If zeros Pk+1 6= eigenvalues A, then, increase k leads to
dimension reduction S(Pk,A, R̃) = dimension increase Kk(A

∗, R̃)



s ∈ N, typically s = 1,2,4,8. R̃ is a full rank n× s matrix.

Definition. Pk polynomial of exact degree k.

• Pk Sonneveld subspace order k generated by A and R̃

S(Pk,A, R̃) ≡
{
Pk(A)v | v ⊥ Kk(A

∗, R̃)
}

IDR Theorem. With Pk+1(λ) ≡ (α− ωλ)Pk(λ), ω 6= 0

• (αI− ωA)
(
S(Pk,A, R̃) ∩ R̃

⊥)
= S(Pk+1,A, R̃)

• S(Pk+1,A, R̃) ⊂ S(Pk,A, R̃)

• $ if A has no eigenvector in R̃
⊥

and S(Pk,A, R̃) 6= {0}.

Corollary Gk ≡ S(Pk,A, R̃), G′k ≡ Gk ∩R⊥.

With Pk+1(λ) ≡ (1− ωkλ)Pk(λ), we have

Gk+1 ≡ (I − ωkA)G′k ⊂ Gk and AG′k ⊂ Gk
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Induced Dimension Reduction

Select (ωk), R̃. Let Pk+1(λ) = (1− ωkλ)Pk(λ).

G0 = Cn, Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩ R̃
⊥
.

IDR: construct residuals rk in Gk iteratively by increase k



Induced Dimension Reduction

Select (ωk), R̃. Let Pk+1(λ) = (1− ωkλ)Pk(λ).

G0 = Cn, Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩ R̃
⊥
.

IDR: construct residuals rk in Gk

The first residual to be in Gk by construction

is called a primary residual.

The implementation may rely on other residuals:

secondary residuals



Induced Dimension Reduction

Select (ωk), R̃. Let Pk+1(λ) = (1− ωkλ)Pk(λ).

G0 = Cn, Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩ R̃
⊥
.

IDR: construct residuals rk in Gk

All our updates for residuals are of the form

r ← r− αc with c = Au and u available.

Hence, x ← x + αu. Updates r and x are consistent.

Approximate solution x gets a(n almost) free ride:

only vector updates, no MVs, no inner products.

Focuss on r
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Π1 is a skew projection that projects onto R̃
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Π1 = I−Vσ−1R̃
∗

with σ ≡ R̃
∗
V s× s non-singular,

and V ≡ Vk is n× s matrix with span(V) ⊂ Gk

[rk,Vk] full rank

Π1(vj) = 0 for the columns of V = [v1, . . . ,vs]



Induced Dimension Reduction
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Induced Dimension Reduction

Select (ωk), R̃. Let Pk+1(λ) = (1− ωkλ)Pk(λ).

G0 = Cn, Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩ R̃
⊥
.

IDR: construct residuals rk+1 in Gk+1, Vk+1 span in Gk+1.

Gk

Vk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃

V′k =????

pol. step
→

I− ωkA
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w ∈ G′k ⇒ Aw ∈ Gk ⇒ Π1Aw ∈ G′k
⇒ Ks+1(Π1A, r′k) ⊂ G′k

• V′k with span(r′k,V′k) = Ks+1(Π1A, r′k); AV′k is side product



Induced Dimension Reduction

Select (ωk), R̃. Let Pk+1(λ) = (1− ωkλ)Pk(λ).

G0 = Cn, Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩ R̃
⊥
.

IDR: construct residuals rk+1 in Gk+1, Vk+1 span in Gk+1.

Gk

Vk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃

V′k = !!

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
Vk+1 = V′k − ωkAV′k

Theorem. Assume span([rk,Vk]) ⊂ Gk.

If [r′k,V′k] spans Ks+1(Π1A, r′k) and no break-down occurs,

then span([rk+1,Vk+1]) ⊂ Gk+1.

This is essentially the only way to move to the next Gk



[r′k,V′k] spans Ks+1(Π1A, r′k). How to select the basis Vk?

(In exact arithmetic)

any basis leads to the same projection.
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Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗



Gk
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IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Deflated system:

Solve Π1Ax′ = r′k for x′ ⊥ R̃. (∗)
Then x = xk + Qrk + (I−QA)x′ solves Ax = b.

Note. Π1A : R̃
⊥ → R̃

⊥
and Π1rk ∈ R̃

⊥
.

Kk(Π1A,Π1rk) leads to approximate solutions of (∗) in R̃
⊥
.



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Deflated system:

Solve Π1Ax′ = r′k for x′ ⊥ R̃. (∗)
Then x = xk + Qrk + (I−QA)x′ solves Ax = b.

Note. Π1A : R̃
⊥ → R̃

⊥
and Π1rk ∈ R̃

⊥
.

Kk(Π1A,Π1rk) leads to approximate solutions of (∗) in R̃
⊥
.

Solve (∗) with s steps of some Krylov method:

Advantage. At the same time

a basis V′ of Ks+1(Π1A,Π1rk) and a smaller residual.



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Deflated system:

Solve Π1Ax′ = r′k for x′ ⊥ R̃. (∗)
Then x = xk + Qrk + (I−QA)x′ solves Ax = b.

Note. Π1A : R̃
⊥ → R̃

⊥
and Π1rk ∈ R̃

⊥
.

Kk(Π1A,Π1rk) leads to approximate solutions of (∗) in R̃
⊥
.

However, if ss is an s-step Krylov residual, then

Π1(ss − ωkAss) = rk+1.



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Interpretation. Solve Au = r

Search for an approximate solution in span(U)

R∗AUα = R∗r

Then u ≈ Uα = U(R∗AU)−1R∗r = Qr



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Interpretation. Solve Au = r

Search for an approximate solution in span(U)

R∗AUα = R∗r

Then u ≈ Uα = U(R∗AU)−1R∗r = Qr

In multigrid:
R∗ represents the restriction operator
U represents the prolongation
Q is the coarse grid correction



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Interpretation. Solve Au = r

Search for an approximate solution in span(U)

R∗AUα = R∗r

Then u ≈ Uα = U(R∗AU)−1R∗r = Qr

Then the update of the residual r is

r′k = rk −AQrk

with update of the approximate solution

x′k = xk + Qrk



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Interpretation.

Coarse grid correction: r′k = rk −AQrk and x′k = xk +Qrk
Smoothing: rk+1 = r′k − ωAr′k and xk+1 = x′k + ωr′k



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Interpretation.

Coarse grid correction: r′k = rk −AQrk and x′k = xk +Qrk
Smoothing: rk+1 = r′k − ωAr′k and xk+1 = x′k + ωr′k
Combine: rk+1 = (I− ωA)Π1rk = rk −A(Q + ωΠ1)r

xk+1 = xk + (Q + ωΠ1)rk

With P ≡Q + ωΠ,

I−AP is the residual reduction operator



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Interpretation.

Coarse grid correction: r′k = rk −AQrk and x′k = xk +Qrk
Smoothing: rk+1 = r′k − ωAr′k and xk+1 = x′k + ωr′k
Combine: rk+1 = (I− ωA)Π1rk = rk −A(Q + ωΠ1)r

xk+1 = xk + (Q + ωΠ1)rk

With P ≡Q + ωΠ,

I−PA is the error reduction operator



Gk

rk

IDR step
→
Π1

G′k ≡ Gk ∩ R̃
⊥

r′k = Π1rk

pol. step
→

I− ωkA
Gk+1 ≡ (I− ωkA)G′k
rk+1 = r′k − ωkAr′k

Π1 = I−AUσ−1R̃
∗

with σ ≡ R∗AU and V = AU

Π1 = I−AQ with Q ≡ Uσ−1R̃
∗

Interpretation.

Coarse grid correction: r′k = rk −AQrk and x′k = xk +Qrk
Smoothing: rk+1 = r′k − ωAr′k and xk+1 = x′k + ωr′k
Combine: rk+1 = (I− ωA)Π1rk = rk −A(Q + ωΠ1)r

xk+1 = xk + (Q + ωΠ1)rk

With P ≡Q + ωΠ,

I−PA is the error reduction operator

IDR can be viewed as
Richardson with a flexible preconditioner



Spectrum of IDR’s error reduction operator

Λ(I−PA) = Λ(I−AP) = Λ(Π1(I− ωA))

The eigenvalues of the IDR error reduction operator

I−PA

are related to the eigenvalues of the IDR deflated matrix

Π1A.

[Erlangga, Nabben, 2008]

Theorem. For a λ ∈ C, λ 6= 0 we have that

if Π1Av = λv then Π1(I− ωA)v = (1− ωλ)v

If Π1Av = 0 then (I−PA)v = 0.



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk as in IDR



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk

Theorem
• 0 is an eigenvalue of Π1A with geometric multiplicity ≥ s.

• If Pk(µ) = 0 (i.e., µ = 1/ωj for some j < k), then

µ is an eigenvalue of Π1A with geometric multiplicity ≥ s

• If Pk(µ) = Pk(µ) = . . . = P
(`−1)
k (µ) = 0 then

µ is an eigenvalue of Π1A with algebraic multiplicity ≥ `s

If span(V) ⊂ Gk,

then V = Pk(A)V for some n× s matrix V ⊥ Kk(A
∗, R̃).

• If R̃
∗
(A− λI)−1V is singular,

then λ is an eigenvalue of Π1A.



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk

If span(V) ⊂ Gk,

then V = Pk(A)V for some n× s matrix V ⊥ Kk(A
∗, R̃).

Theorem. V is independent of Pk in IDR.



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk

Comment. Vk only spans an s-dimensional subspace.

(with expected deflation as indicated by the s-fold eig. 0)



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk

Comment. Vk only spans an s-dimensional subspace.

(with expected deflation as indicated by the s-fold eig. 0)

Though Vk has a “memory”

of all ks vectors in the preceeding Vj (j < k):

it allows control (clustering) of ks eigenvalues.



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk

Theorem

• If Pk(µ) = 0 (i.e., µ = 1/ωj for some j < k), then

1− ωkµ is an eigenvalue of (I− ωkA)Π1 with multiplicity s,

0 is an eigenvalue of (I− ωkA)Π1 with multiplicity s.



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk

Theorem

• If Pk(µ) = 0 (i.e., µ = 1/ωj for some j < k), then

1− ωkµ is an eigenvalue of (I− ωkA)Π1 with multiplicity s,

0 is an eigenvalue of (I− ωkA)Π1 with multiplicity s.

Comment. When selecting ωj = 1 (j ≤ k),

0 is an eigenvalue of (I−ωkA)Π1 with multiplicity (k+1)s.



The spectrum of IDR’s deflated operator

With (ωk), Pk+1(λ) = (1− ωkλ)Pk(λ),

Gk+1 ≡ (I− ωkA)G′k with G′k ≡ Gk ∩R⊥,

Let V be such that span(V) ⊂ Gk

Theorem

• If Pk(µ) = 0 (i.e., µ = 1/ωj for some j < k), then

1− ωkµ is an eigenvalue of (I− ωkA)Π1 with multiplicity s,

0 is an eigenvalue of (I− ωkA)Π1 with multiplicity s.

• If Vk is constructed with the IDR scheme, then

the remaining n− (k + 1)s eigenvalues
do not depend on ωj, j < k.



Conclusions

• IDR is a [class of] very effective methods

• IDR can be viewed as a deflation method with a
flexible preconditioner

• The deflated matrices as produced in IDR have
remarkable spectral properties

• It is not clear how to exploit these elegant relations
and properties to explain the effectiveness of IDR
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