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e Introduction



Solve Ax = b for X. A is n x n non-singular (complex).



Krylov subspace methods

To solve AX = b for X

e EXpansion.
Built a Krylov subspace K.(A,b)

e Extraction.
Extract an approximate solution x; from Ki(A,b)
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Krylov subspace methods

To solve AX = b for X

e EXpansion.
Built a Krylov subspace K.(A,b)

e Extraction.
Extract an approximate solution x; from Ki(A,b)

Convergence depends on spectral properties of A:

— how well eigenvalues are clustered
— on the “conditioning” of the eigenvector basis

Two ways to improve spectral properties:

e Preconditioning. To cluster eigenvalues, ...
Apply iterative method to K~1Ax = K~ 1b

e Deflation. To replace small eigenvalues by O
Remove known components



e Sonneveld spaces



—_—

s € N, typically s =1,2,4,8. R is a full rank n X s matrix.

Terminology. R is called

the initial shadow residual or
the IDR test matrix



—_—

s € N, typically s =1,2,4,8. R is a full rank n X s matrix.

Definition.

° Krylov subspace

Ki.(A* R) = {Z (A*)Y R7y; | v; € @S}

j<k



—_—

s € N, typically s =1,2,4,8. R is a full rank n X s matrix.

Definition.
° Krylov subspace
Kp(A*,R) = {Z (A*)) Ry | vj € CS}
j<k
Example.

~

Bi-CG generates residuals rP"<C L K, (A*,rp),
here R = [rg]:
b1 =1 0 — Augay, L Kiy1 (A%, Fo)

with u; such that Aug L /Ck(A*,Fo)



—_—

s € N, typically s =1,2,4,8. R is a full rank n X s matrix.
Definition. P, polynomial of exact degree k.

° Sonneveld subspace

S(P,,A,R) = {Pk(A) v vl ICk(A*,ﬁ)}



—_—

s € N, typically s =1,2,4,8. R is a full rank n X s matrix.
Definition. P, polynomial of exact degree k.

o Sonneveld subspace
S(Pp, AR) = {P(A)V | v L Ki(A*R)

——

Example. R = [FO]' rEi‘CGSTAB — Pk(A)r]Esi—CG

~

Note that  rg"<¢ L Kr(A*,rp).
In Bi-CGSTAB: Pk—l—1(>\) = (1 — wk)\)Pk()\),
where, with 1) = Pk(A)rEflG,

Wy, = argminweC||r§~€ — wAr|>

Theorem. rP"C5>TAB ¢ S(P, A, Tp).



—_—

s € N, typically s =1,2,4,8. R is a full rank n X s matrix.
Definition. P, polynomial of exact degree k.

° Sonneveld subspace

S(P,,A,R) = {Pk(A) v vl ICk(A*,ﬁ)}

Property. Bi-CGSTAB ~ IDR(s) for s =1 (i.e. R =[rg])



Convergence history linear solvers. Matrix "meier01" is 1000 x 1000
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s € N, typically s =1,2,4,8. R is a full rank n X s matrix.
Definition. P, polynomial of exact degree k.

° Sonneveld subspace

S(P,,A,R) = {Pk(A) v vl Kk(A*,ﬁ)}
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——

e S if A has no eigenvector in R and S(P.,A,R) # {0}.
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s € N, typically s =1,2,4,8. R is a full rank n X s matrix.
Definition. P, polynomial of exact degree k.

° Sonneveld subspace

S(P,,A,R) = {Pk(A) v vl Kk(A*,ﬁ)}

IDR Theorem. With Pk—l—l()‘) = (Oé — w)\)Pk()\), w 7+— 0
o (ol —wA) (5(pk, A R)N ”r(#) = S(Pyy1,A,R)
o S(Piy1,AR) CS(P,AR)

——

e S if A has no eigenvector in R and S(P.,A,R) # {0}.

If zeros P,y 1 # eigenvalues A, then, increase k leads to
dimension reduction S(P, A,R) = dimension increase K.(A*,R)



—_—

s € N, typically s =1,2,4,8. R is a full rank n X s matrix.
Definition. P, polynomial of exact degree k.

° Sonneveld subspace

S(P,,A,R) = {Pk(A) v vl Kk(A*,ﬁ)}

IDR Theorem. With Pk—I—l()‘) = (Oé — w)\)Pk()\), w 7+— 0
o (al—wA) (5(pk, A R)N ”r(#) = S(Pyy1,A,R)
o S(Piy1,AR) CS(P,AR)

——

e S if A has no eigenvector in R and S(P.,A,R) # {0}.

Corollary Gr = S(P,,A,R), ' =GpNRL.
With Pry1(A) = (1 — wiA)Pr(X), we have
Grt+1 = —wiA)G, C G and AG) C Gg



e Inducing dimension reduction



Induced Dimension Reduction

Select (wy), R. Let P,y1(\) = (1 — wpd)P(N).

: — 1

IDR: construct residuals r, in G, iteratively by increase k



Induced Dimension Reduction

Select (wy), R. Let P,y1(\) = (1 — wpd)P(N).

: —
go Z(Cn, gk_|_1 = (I_CL)]{:A)Q;C with ;c EgkﬂR .
IDR: construct residuals r; in Gy

The first residual to be in G, by construction
IS called a primary residual.



Induced Dimension Reduction

Select (wy), R. Let P,y1(\) = (1 — wpd)P(N).

: —
go Z(Cn, gk_|_1 = (I—(,L)]CA)Q;~C with ;{ EgkﬂR .
IDR: construct residuals r; in Gy

All our updates for residuals are of the form

r—r—aC with ¢ = Au and u available.

Hence, X «— X+ au. Updates r and X are consistent.

Approximate solution x gets a(n almost) free ride:
only vector updates, no MVs, no inner products.



Induced Dimension Reduction

Select (wy), R. Let P,y1(\) = (1 — wpd)P(N).

: —
Jo = C", gk_|_1 = (I_CL)]{:A)Q;C with ;c EgkﬂR .
IDR: ri € G, then construct residual rp4q1 in Gpyq

— 1

I—ka

/! — — ¢/ /
I r.="rlirg Fp41 =, — wipArg

. — 1
11 is projects onto R
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Induced Dimension Reduction

Select (wy), R. Let P,y1(\) = (1 — wpd)P(N).

: — 1

IDR: ri € G, then construct residual rp4q1 in Gpyq

IDR step . pol. step
N I—w, A
r 1 v = MNirg k ret1 = rh, — wpAr,
. . — 1
[11 IS projects onto R

N =I-Vo R with ¢ =RV s x s non-singular,

and V =V, is n xs matrix with span(V) C G
[rr, V] full rank

M1(v;) = 0 for the columns of V = [vq,...,V4]
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IDR: construct residuals rp4 1 in Gy 1, Vg1 Spanin Gy q.

IDR step N pol. step
[ I—w
V, 1 V) =7777 B2 My = V] — w AV
. . — 1
[11 IS projects onto R

weg, = AwegG, = [MHAweg,

= Kyp1(MA,r) C gy

e V/ with span(r,,V/) =K, 1(N1A,r})



Induced Dimension Reduction

Select (wy), R. Let P,y1(\) = (1 — wpd)P(N).

: — 1

IDR: construct residuals rp4 1 in Gy 1, Vg1 Spanin Gy q.

IDR step N pol. step
[ I—w
V, 1 V) =7777 B2 My = V] — w AV
. . — 1
[11 IS projects onto R

weg, = AwegG, = [MHAweg,

= Kyp1(MA,r) C gy

e V/ with span(r,,V)) =K,11(MA,r.); AV, is side product



Induced Dimension Reduction

Select (wy), R. Let Pry1(A) = (1 — wiA) P (N).

. — 1
go = C", Qk_|_1 = (I — ka)g;C with g;{ = Qk NR .

IDR: construct residuals rp41 in Gy 1, V41 Spanin Gy 1.

IDR step ~_ pol. step
v, 1 vi=un I7@h oy —vouAv

Theorem. Assume  span([rg, V.]) C Gg.

If [r,,V/] spans K,41(M1A,r.) and no break-down occurs,

then span([rg4+1, Vet+11) C g1

This is essentially the only way to move to the next G,



[r., V] spans KCs41(M1A,r,). How to select the basis V7

(In exact arithmetic)
any basis leads to the same projection.



e IDR and deflation



IDR step . pol. step
M I - w, A
rk 1 r?{ = I‘Ilrk k k+1 = I’k — (,%AI’;€

N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’



IDR step . bol. step

re r, = Myry
N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Deflated system:

Solve M;Ax' =¥, for x' L R. (%)
Then X=X+ Qrp+ (I- QA)X solves Ax =Db.
Note. MA:R- —R- and M eR

: : N
KCr(M1A,M1r,) leads to approximate solutions of (x) in R™.



IDR step . pol. step
M I - w, A
rk 1 I’;{ = I‘Ilrk k k+1 = I’k — kal’%

N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Deflated system:

Solve M;Ax' =¥, for x' L R. (%)
Then X=X+ Qrp+ (I- QA)X solves Ax =Db.
Note. MA:R- —R- and M eR

: : N
KCr(M1A,M1r,) leads to approximate solutions of (x) in R™.

Solve (x) with s steps of some Krylov method:

Advantage. At the same time
a basis V' of K4 1(M1A,M1rg) and a smaller residual.



IDR step . bol. step

re r, = Myry
N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Deflated system:

Solve M;Ax' =¥, for x' L R. (%)
Then X=X+ Qrp+ (I- QA)X solves Ax =Db.
Note. MA:R- —R- and M eR

ICr(M1A,M1r,) leads to approximate solutions of (x) in AR/L.

However, if Sg is an s-step Krylov residual, then
|_|1(SS — kaSS) =41



IDR step . bol. step

re r, = Myry
N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Interpretation. Solve Au=r

Search for an approximate solution in span(U)
R*AUa = R*r

Then uxUa=U(R*AU)"IR*r=Qr



IDR step . bol. step

re r, = Myry
N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Interpretation. Solve Au=r

Search for an approximate solution in span(U)
R*AUa = R*r

Then uxUa=U(R*AU)"IR*r=Qr



IDR step . bol. step

re r, = Myry
N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Interpretation. Solve Au=r

Search for an approximate solution in span(U)
R*AUa = R*r

Then uxUa=U(R*AU)"IR*r=Qr

Then the update of the residual r is
r, =r, — AQry
with update of the approximate solution
X, = X; + Qrg



IDR step . pol. step
M I - w, A
rk 1 r?{ = I‘Ilrk k k+1 = I’k — (,%AI’;€

N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Interpretation.
r;{ =r; — AQI‘k and X;~C = XL -+ Qrk
l‘k_|_1 = I’;~C — wAI’;{: and Xk—l—l = X;{: —+ wr;g



IDR step . bol. step
gk — ;€ = Qk N R — gk_l_l = (I — ka)g

re r, = Myry
N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Interpretation.
r, =ry—AQrg and x, = X + Qryg
41 =F, —wAr, and Xg41 = X} + wr),
Combine: ryy1 = (I - wA)Mrg =1 — A(Q + wly)r
Xp+1 = Xp + (Q +wllp)ry
With P = Q + wll,
I - AP is the residual reduction operator
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IDR step . bol. step
gk — ;c = Qk N R — gk_l_l = (I — ka)g

re r, = Myry
N, =I- AUs !R" with ¢ = R*AU and V = AU
M =I- AQ with Q = Us IR’

Interpretation.
r, =ry—AQrg and x, = X + Qryg
41 =F, —wAr, and Xg41 = X} + wr),
Combine: ryy1 = (I - wA)Mrg =1 — A(Q + wly)r
Xp+1 = X + (Q + wllp)ry
With P = Q + wll,
I - PA is the error reduction operator



Spectrum of IDR’s error reduction operator
AI—PA) = A1 — AP) = A(M{1(I - wA))

The eigenvalues of the IDR error reduction operator
I-PA
are related to the eigenvalues of the IDR deflated matrix

Nn,A.

Theorem. For a A € C,\ # 0 we have that
if M{Av=2Av then MN{(I—-wA)v=(1—wA)V
If M{Av=0 then (I-PA)v=0.



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gra1 = (I—wpA)G, with G, =G, NRY,
Let V be such that span(V) C G



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gri1 = (I—wpA)G, with G =G, NRY,
Let V be such that span(V) C G

Theorem
e O is an eigenvalue of N1 A with geometric multiplicity > s.
o If P,(n) =0 (i.e., p=1/w; for some j < k), then

@ is an eigenvalue of ;A with geometric multiplicity > s
/—1
o If Py(p) = Pp(p) =... = P (1) = 0 then
@ is an eigenvalue of Il A with algebraic multiplicity > ¢s

If span(V) C G,
then V = P.(A)V for some n x s matrix V L K.(A*, R).

e IfR'(A— )1V is singular,
then X is an eigenvalue of N1 A.



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gra1 = (I—wpA)G, with G, =G, NRY,
Let V be such that span(V) C G

If span(V) C G,
then V = P.(A)V for some n x s matrix V L K.(A* R).

Theorem. V is independent of P, in IDR.



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gra1 = (I—wpA)G, with G, =G, NRY,
Let V be such that span(V) C G

Comment. V. only spans an s-dimensional subspace.



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gra1 = (I—wpA)G, with G, =G, NRY,
Let V be such that span(V) C G

Comment. V. only spans an s-dimensional subspace.

Though V. has a “memory”
of all ks vectors in the preceeding V; (j < k):
it allows control (clustering) of ks eigenvalues.



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gra1 = (I—wpA)G, with G, =G, NRY,
Let V be such that span(V) C G

Theorem

o If P,(n) =0 (i.e., p=1/w; for some j < k), then
1 — wip is an eigenvalue of (I — wiA)lM1 with multiplicity s,
0 is an eigenvalue of (I — w,A)lM; with multiplicity s.



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gri1 = (I—wpA)G, with G =G, NRY,
Let V be such that span(V) C G

Theorem

o If P,(n) =0 (i.e., p=1/w; for some j < k), then
1 — wip is an eigenvalue of (I — wiA)lM1 with multiplicity s,
0 is an eigenvalue of (I — w,A)lM; with multiplicity s.

Comment. When selecting w; =1 (j <k),

0 is an eigenvalue of (I —w,A)M1 with multiplicity (k4 1)s.



The spectrum of IDR’s deflated operator

With (wr),  Prg1(A) = (1 —wpA) Pe(N),
Gri1 = (I—wpA)G, with G =G, NRY,
Let V be such that span(V) C G

Theorem

o If P,(n) =0 (i.e., p=1/w; for some j < k), then
1 — wip is an eigenvalue of (I — wiA)lM1 with multiplicity s,
0 is an eigenvalue of (I — w,A)lM; with multiplicity s.

e If V. is constructed with the IDR scheme, then

the remaining n — (k + 1)s eigenvalues
do not depend on wy, 5 < k.



Conclusions

IDR is a [class of] very effective methods

IDR can be viewed as a deflation method with a
flexible preconditioner

The deflated matrices as produced in IDR have
remarkable spectral properties

It is not clear how to exploit these elegant relations
and properties to explain the effectiveness of IDR
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