Modularity Graph Clustering on the GPU

B. O. Fagginger Auer R. H. Bisseling

Utrecht University

April 10, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Introduction

@ We will perform greedy clustering of large graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Introduction

@ We will perform greedy clustering of large graphs.

o Clustering ~ isolating ‘related’ groups of vertices in a graph.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Introduction

@ We will perform greedy clustering of large graphs.
o Clustering ~ isolating ‘related’ groups of vertices in a graph.

@ Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

@ Bioinformatics: group genes
with similar expressions.

@© National Human Genome Research Institute

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

@ Bioinformatics: group genes
with similar expressions.

@ Medical imaging: image
segmentation in CT/MRI.

98/
III

@© Alexandra Lauric

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

@ Bioinformatics: group genes
with similar expressions.

@ Medical imaging: image
segmentation in CT/MRI.

@ Market research: consumer
grouping.

© Georgia Tech

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

Social Media Landscape

@ Bioinformatics: group genes D uia
0 Yan

with similar expressions. Y °°-.-:M
@ Medical imaging: image P e
' = = v () « (0N -

segmentation in CT/MRI.

> Em Media
¢ g . @ o
Py — o o

@ Market research: consumer =;.=~»_ @Mu °
rouping. ERP i
grouping a2 e

@ Social networks: community

detection.
© Fred Cavazza

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.

@ The weight w({u, v}) measures the strength of the link between
vertices u and v.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.

@ The weight w({u, v}) measures the strength of the link between
vertices u and v.

@ A clustering of G is a partitioning C of V:

V= U C as a disjoint union.
ceC

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.

@ The weight w({u, v}) measures the strength of the link between
vertices u and v.

@ A clustering of G is a partitioning C of V:

V= U C as a disjoint union.
ceC

@ Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

@ Clustering modularity is defined as

&g s (gaw)
el eg_:w(e) ! 4 ((EjEw(e))2 |

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

@ Clustering modularity is defined as

&g s (gaw)
el eg_:w(e) ! 4 (E}Ew(e))2 |

@ Here, vertex weights (: V' — R>q are defined as

C(v):= Y w{uv})

{u,v}€E

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

@ Clustering modularity is defined as

&g s (gaw)
el eg_:w(e) ! 4 (E};«z(e))2 |

@ Here, vertex weights (: V' — R>q are defined as

C(v):= Y w{uv})

{u,v}€E

@ We have —% < mod(C) < 1.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

@ mod(C) can be rewritten to

4922 C)(22-¢(0) —29 | Y wlcut(C, C"))
ceC CC’/;iCC

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

@ mod(C) can be rewritten to

492 ST leo)ea-¢(0) -2 | 3 wleut(c,)
ceC c’ec
C'#C
@ Here,

Q:=> wle),

ecE

)= w({uv})

{u,v}€E
cut(C,C"):={{u,v} € E|ue Candve ('}

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

@ mod(C) can be rewritten to

4922 C)(22-¢(0) —29 | Y wlcut(C, C"))
ceC CC’/;éCC

@ Here,

Q:=> wle),

ecE
(V)= Y w{uv})
{u,v}€E
cut(C,C"):={{u,v} € E|ue Candve ('}
@ To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.

@ Then,
((cuc)=¢(C)+¢(c)

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((cuc)=¢(C)+¢(c)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

1

o (29w(cut(C, ') = <(C) C(Cl)>'

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((cuc)=¢(C)+¢(c)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

2_£122 (29w(cut(c, ') = <(C) C(Cl)>'

@ This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Start with vertices in a separate cluster: C = {{v} | v € V}.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Match clusters to increase modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Merge matched clusters (sum w and ().

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Match clusters to increase modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Merge matched clusters (sum w and ().

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Match clusters to increase modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Return clustering with highest modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

0 iterations.

April 10, 2012

Agglomerative clustering (netherlands)

11 iterations.

gginger Auer, Bisseling (UU April 10, 2012

Agglomerative clustering (netherlands)

21 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

26 iterations.

GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

33 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Agglomerative clustering (netherlands)

Final clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Parallel agglomerative clustering

© Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

L (20u(an(c.C) - (O)(C)).

© Extend matching to avoid getting stuck.
© Merge all matched clusters, summing ¢ and w.
© Go to step 2 until only a single cluster remains.

@ Return encountered clustering with highest modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Parallel agglomerative clustering

© Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

L (20u(an(c.C) - (O)(C)).

© Extend matching to avoid getting stuck.
© Merge all matched clusters, summing ¢ and w.
© Go to step 2 until only a single cluster remains.

@ Return encountered clustering with highest modularity.

We make use of parallelism in steps 2, 3, and 4.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

e For a graph G = (V, E), a matching is a collection M C E of edges
that are disjoint.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

GPU matching problems

e For a graph G = (V, E), a matching is a collection M C E of edges
that are disjoint.

@ Performing matching in parallel is problematic.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

e For a graph G = (V, E), a matching is a collection M C E of edges
that are disjoint.

@ Performing matching in parallel is problematic.

@ Disjoint edges requirement leads to serialisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

Suppose we match vertices simultaneously.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

2

5

Vertices find an unmatched neighbour. ..

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

April 10, 2012

GPU matching problems

... but generate an invalid matching.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

@ To solve this we create two groups of vertices: blue and red.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

GPU matching

@ To solve this we create two groups of vertices: blue and red.

@ Blue vertices propose.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

@ To solve this we create two groups of vertices: blue and red.
@ Blue vertices propose.

@ Red vertices respond.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.
Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.
Blue vertices propose.
Red vertices respond.

Proposals that were responded to are matched.

Store matching ina map7:V — N:

{u,v}eM = m(u) = 7w(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.

@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.
@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).

@ Both 7 and ¢ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

1 2 8
4
Colour
Propose 9
Respond 5
Match 6

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
7m|b r r b b r b b r
o - - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

1 8
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
#|b r r b b r b b r
c|!3 - - 3 6 - 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

1 8
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
#=|b r r b b r b b r
c|!3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
! 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|b 2 3 b 5 5 3 2 r
c|3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
. 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
. 2
4
Colour
Propose 5
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl- - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
. 2
4
Colour
Propose 5
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl- - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
. 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
©=|r 2 3 r 5 5 3 2 d
cl- - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
! 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
~|b 2 3 r 5 5 3 2 d
cl- - - - - - - - d
April 10, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

GPU matching (algorithm)

8
v 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
~|b 2 3 r 5 5 3 2 d
ola - - - - - -
April 10, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

GPU matching (algorithm)

8
v 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
/b 2 3 r 5 5 3 2 d
cl4 - - 1 - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
|1 2 3 1 5 5 3 2 d
cld4 - - 1 - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.

e Time: matching and CPU < GPU data transfer, not disk I/O.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (scaling)

Clustering time scaling

100
90 P
80 |-

70 o
60 [

BO |
40

XK :>,§f>,<,~><,><

30 -

jje'?of

20 -

Relative clustering time (%)

10 errﬁ s 1 s s PR s s
1 2 4 8 16

Number of CPU threads

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (time)

Clustering time

10° ¢

3*10‘7|£E|]
102 [CUDA v+]
. TBB :--x--- %]
- % N X
10 .
@ I
-Gé 107 F
20T oy .
= +
R]
) x 3%
TR ——— -
104 F -
10—5 [o NI Ll Al

10" 102 10° 10* 10° 10 107 10® 10°
Number of graph edges |E|

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 198 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880

Fagginger Auer, Bisseling (UU)

GPU Graph Clustering

April 10, 2012

Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 198 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880

@ Lower quality, because we do not use local refinement.

Fagginger Auer, Bisseling (UU)

GPU Graph Clustering

April 10, 2012

Results (time)

@ Our algorithm is very fast for large graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

e TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity
0.974 clustering in 31 seconds.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.

@ The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Questions

3 any questions?

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Modularity

@ How to measure clustering quality?

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Modularity

@ How to measure clustering quality?
o Let C={GC,..., Cc} and define

ejj := weighted fraction of edges between (; and C;.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

@ How to measure clustering quality?
o Let C={GC,..., Cc} and define

ejj := weighted fraction of edges between (; and C;.

@ Maximise intra-cluster edges:

k
mCE']X (Zl [H ,') .
=

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

How to measure clustering quality?
Let C = {G,..., Ck} and define

ejj := weighted fraction of edges between (; and C;.

@ Maximise intra-cluster edges:

k
mch (Zl [H ,') .
=

@ But this leads to C = {V'} as optimal solution!

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

@ Define

k
aj = Z ejj = weighted fraction of edges incident to C;.
j=1

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Modularity

@ Define

k
aj = Z ejj = weighted fraction of edges incident to C;.
j=1

o Cut all edges and reconnect vertices randomly, then

e,~J- =~ aj aj.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

@ Define

k
aj = Z ejj = weighted fraction of edges incident to C;.
j=1
o Cut all edges and reconnect vertices randomly, then
€jj =~ aja;.
@ Modularity measures how much better we do than the random case:

mod(C) := Zk: (e,-,- - a?).

i=1

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

e For any clustering C:

1
—3 <mod(C) < 1.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Modularity

e For any clustering C:
1

e Maximising modularity is strongly NP-complete (Brandes et al.,
2008).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

e For any clustering C:
1

e Maximising modularity is strongly NP-complete (Brandes et al.,
2008).

@ Modularity maximisation fails to resolve small communities (Kumpula
et al., 2007).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Star graphs

Agglomerative clustering slows down on star graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Star graphs

Merging vertices with the same neighbours is bad for clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Star graphs

So we merge multiple satellites to the same centre.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

o To identify star centres and satellites, we propose a centre potential.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Centre potential

o To identify star centres and satellites, we propose a centre potential.

@ This potential is defined for vertices v as
deg(v)?
cp(v) = ———"——"——.
V)= dealw)

{u,v}€E

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

o To identify star centres and satellites, we propose a centre potential.
@ This potential is defined for vertices v as
deg(v)?
cp(v) i = ——=——"—"——.
> deg(u)

{u,v}€E

o We use cp(-) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that

and cp(satellite) — 0 as k — oo,

N

cp(satellite) <

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that
cp(satellite) < and cp(satellite) — 0 as k — oo,

cp(centre) > and cp(centre) — oo as k — oc.

WA N| =

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Colouring vertices

@ To colour vertices v € V, we use for a fixed p € [0, 1]

(v) = blue with probability p,
| red with probability 1 — p.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Colouring vertices

@ To colour vertices v € V, we use for a fixed p € [0, 1]

(v) = blue with probability p,
| red with probability 1 — p.

@ How to choose p? Maximise the number of matched vertices.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

April 10, 2012

Colouring vertices

@ To colour vertices v € V, we use for a fixed p € [0, 1]

(v) = blue with probability p,
| red with probability 1 — p.

@ How to choose p? Maximise the number of matched vertices.

@ For a large random graphs, the expected fraction of matched vertices
can be approximated by (independent of edge density)

2(1 - p) (1—efﬁ).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

g Influence of relative blue/red group size S Influence of relative blue/red group size

< 100 > as w100

=1 3 Observed ——

S 80 F £ 80 Equation (2) -

E > +

g2 60 Matching weight —— 2 60| N

% Matching size - 5 A

g 4 N Matching time ------ E ‘g 40 %

5 % X — g

g 2 Kok X S 20

= i)

3 0 L L L L g 0 L L L L

T 0 20 40 60 80 100 T 0 20 40 60 80 100
Fraction of vertices that are blue (%) Fraction of vertices that are blue (%)

We should choose p ~ 0.53406.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

@ We should maximise the relative number of matched vertices each
round.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Choosing p

@ We should maximise the relative number of matched vertices each
round.

@ The number of matched vertices equals twice the number of red

vertices that receive at least one proposal: maximise % where

N := number of red vertices receiving at least one proposal.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

@ We should maximise the relative number of matched vertices each

round.
@ The number of matched vertices equals twice the number of red

vertices that receive at least one proposal: maximise % where

N := number of red vertices receiving at least one proposal.

@ For a random graph with n vertices, we can approximate
(independent of edge density)

o 2E(N(n)

n—oo n

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) = d for d €]0,1]. Then
E(N(n)) is given by

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) = d for d €]0,1]. Then
E(N(n)) is given by

Z P(m(v) = red) P(v is proposed to | w(v) = red)
veVv

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p
Let G = ({1,...,n}, E) with P({v,w} € E) =d for d €]0,1]. Then
E(N(n)) is given by

Z P(n(v) = red) P(v is proposed to | w(v) = red)
veVv

= P(n(v) = red) (1 - H (1 — P(w proposes to v | m(v) = red)))

weV\{v}

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) =d for d €]0,1]. Then
E(N(n)) is given by

Z P(n(v) = red) P(v is proposed to | w(v) = red)

veVv

= P(n(v) = red) (1 - H (1 — P(w proposes to v | m(v) = red)))
vev weV\{v}

B B P(m(w) = blue) P({v,w} € E)

= P(r(v) = red) (1 a H (1 "~ nr. of red neighb. of w))
ve weV\{v}

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) = d for d €]0,1]. Then
E(N(n)) is given by

Z P(n(v) = red) P(v is proposed to | w(v) = red)

weV\{v}

P(w(w) = blue) P({v, w} € E)
H (1 N nr. of red neighb. of w))

= P(n(v) = red) (1 - H (1 — P(w proposes to v | m(v) = red)))

weV\{v}

i pd n—1
~n(l—p) (1_(1_1+(1—p)(d("—1)_1)>)

= P(n(v) = red) (1 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
» E'={{m(u),7(v)} | {u,v} € E} (collapse edges),

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
» E'={{m(u),7(v)} | {u,v} € E} (collapse edges),

| 4

W'(e') = Z w(e) (sum edge weights),

T(e)=e’

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (") and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V)= Z ¢(v) (sum vertex weights),

w(v)=v’

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (") and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V) = Z ¢(v) (sum vertex weights),

w(v)=v’

» 7(u) = 7(v) if and only if pu(u) = u(v) (compress p to 7).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.

@ View G as a collection of adjacency lists for each vertex.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.

o First, we create and 7! from p.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.

o First, we create and 7! from p.

@ Then, we create the new adjacency lists and weights for G'.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

April 10, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.
View G as a collection of adjacency lists for each vertex.
First, we create and 7! from p.

Then, we create the new adjacency lists and weights for G'.

Use i, m, %, and a bookkeeping array p in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

10

11

12

22

SHIERE NS
N

Initialise p sequentially and store u.

Fagginger Auer, Bisseling (UU)

GPU Graph Clustering

GPU coarsening (algorithm)

p 1 2 4 |5 |6 |7 10 | 11 | 12
" 2 2219 |9 |22 3 (2 |4
7T_1
7T
Sort by increasing p-value (sort_by_key).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 2 |8 11 9 10 | 12 4 |7
" 2 |2 |2 3 (3 |4 22 | 22
7T_1
7T
Sort by increasing p-value (sort_by_key).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 2 |8 |11 9 |10 |12 4 |7
I 2 |12 |2 3 (3 |4 22 | 22
p—
T
Determine different matched groups (adjacent not_equal).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 8 |11 9 |10 |12 7
1 1 /0 |0 0 |0 |1 0
p—
T
Determine different matched groups (adjacent not_equal).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 8 |11 9 |10 |12 7
1 1 /0 |0 0 |0 |1 0
p—
T
Extract boundaries for 7=1 (copy_index_if nonzero).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 8 11 |3 9 10 | 12 7
I 1 0 0 1 0 0 1 0
1 [4 |7 |8 [11]13
s
Extract boundaries for 7=1 (copy_index_if nonzero).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 8 [11]3 |9 [10|12]1 [5 |6 |4 |7
w |1]o o |1 oo |1]1 o o |1 |O
111 [4 [7 [8 [11]13

T

Perform scan to find 7 indices (inclusive_scan).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 11 |3 9 10 | 12 7
I 1 1 1 2 2 2 3 5
a1]1 7 |8 |11 13
T
Perform scan to find 7 indices (inclusive_scan).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p 1113 |9 10 | 12 7
I 1 1 1 2 |2 |2 |3 5
1 7 18 [11]13
m
Extract m as w(p(i)) = u(i) (scatter).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

p |2 |8 [11[3 |9 |10]12[1 [5 |6 |4 |7
po |11 |1]2 2 |3 |4 |4 |4 |5 |5
|1 |4 |7 [8 |11]13

~ |4 |1]2 [5 |4 |4 |5 [1][22]1 |3 |

Extract 7 as w(p(i)) = p(i) (scatter).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.
i y p

Fagginger Auer, Bisseling (UU) GPU Graph Clustering

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m™ (") + -+ Cp(r (T + 1) = 1)).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m™ (") + -+ Cp(r (T + 1) = 1)).
o Gather weighted neighbours of p(7=%(i")) to p(m~1(i’ + 1) — 1):

(i, w1, 2, w2, ..., ik, Wk).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:
¢'(i") = Clp(m™ (") + -+ Cp(r (T + 1) = 1)).
o Gather weighted neighbours of p(7=%(i")) to p(m~1(i’ + 1) — 1):

(71'(/'1),{.01,7['(/2),&)2, e ,W(ik),wk).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:
(") = (1 (N) + -+ C(p(r (i + 1) = 1))
o Gather weighted neighbours of p(7~1(i")) to p(7~1(i" + 1) — 1):
(m(ir), w1, m(i2), wa, - - ., w(ik), wi)-

@ Sort the neighbour list by index.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:
(1) = Clp(r (")) + -+ C(p(r (i + 1) = 1)).
o Gather weighted neighbours of p(7~1(i")) to p(7~1(i" + 1) — 1):
(m(ir), w1, m(i2), wa, - - ., w(ik), wi)-

@ Sort the neighbour list by index.

@ Compress the neighbour list by replacing subsequences
(j/awlvj,7w27 s 7././"")/) with (jlawl Fwr+... .+ UJ/).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

	Introduction
	Modularity
	Agglomerative clustering
	GPU matching
	Results
	Conclusion
	Modularity derivation
	Star graphs
	Colouring vertices
	GPU coarsening

