Modularity Graph Clustering on the GPU

B. O. Fagginger Auer R. H. Bisseling

Utrecht University

April 10, 2012

Introduction

• We will perform greedy clustering of large graphs.

Introduction

- We will perform greedy clustering of large graphs.
- Clustering \approx isolating 'related' groups of vertices in a graph.

Introduction

- We will perform greedy clustering of large graphs.
- Clustering \approx isolating 'related' groups of vertices in a graph.
- Our primary interests are speed and parallelisation.

• Bioinformatics: group genes with similar expressions.

© National Human Genome Research Institute

- Bioinformatics: group genes with similar expressions.
- Medical imaging: image segmentation in CT/MRI.

© Alexandra Lauric

- Bioinformatics: group genes with similar expressions.
- Medical imaging: image segmentation in CT/MRI.
- Market research: consumer grouping.

© Georgia Tech

- Bioinformatics: group genes with similar expressions.
- Medical imaging: image segmentation in CT/MRI.
- Market research: consumer grouping.
- Social networks: community detection.

© Fred Cavazza

Let G = (V, E) be a graph with vertices V, edges E, and edge weights ω : E → ℝ_{>0}.

- Let G = (V, E) be a graph with vertices V, edges E, and edge weights ω : E → ℝ_{>0}.
- The weight ω({u, v}) measures the strength of the link between vertices u and v.

- Let G = (V, E) be a graph with vertices V, edges E, and edge weights ω : E → ℝ_{>0}.
- The weight ω({u, v}) measures the strength of the link between vertices u and v.
- A clustering of G is a partitioning C of V:

$$V = \bigcup_{C \in \mathcal{C}} C$$
 as a disjoint union.

- Let G = (V, E) be a graph with vertices V, edges E, and edge weights ω : E → ℝ_{>0}.
- The weight ω({u, v}) measures the strength of the link between vertices u and v.
- A clustering of G is a partitioning C of V:

$$V = \bigcup_{C \in \mathcal{C}} C$$
 as a disjoint union.

• Quality of a clustering is measured by its modularity mod(*C*), introduced in 2004 by Newman and Girvan.

• Clustering modularity is defined as

$$\mathsf{mod}(\mathcal{C}) := \frac{\sum\limits_{\substack{C \in \mathcal{C} \\ u, v \in \mathcal{C} \\ u, v \in \mathcal{C}}} \sum\limits_{\substack{u, v \in \mathcal{C} \\ e \in \mathcal{E}}} \omega(e)} \omega(\{u, v\}) - \frac{\sum\limits_{\substack{C \in \mathcal{C} \\ v \in \mathcal{C}}} \left(\sum\limits_{v \in \mathcal{C}} \zeta(v)\right)^2}{4\left(\sum\limits_{e \in \mathcal{E}} \omega(e)\right)^2}.$$

• Clustering modularity is defined as

$$\mathsf{mod}(\mathcal{C}) := \frac{\sum\limits_{C \in \mathcal{C}} \sum\limits_{\{u,v\} \in E} \omega(\{u,v\})}{\sum\limits_{e \in E} \omega(e)} - \frac{\sum\limits_{C \in \mathcal{C}} \left(\sum\limits_{v \in C} \zeta(v)\right)^2}{4\left(\sum\limits_{e \in E} \omega(e)\right)^2}.$$

• Here, vertex weights $\zeta: V \to \mathbb{R}_{\geq 0}$ are defined as

$$\zeta(\mathbf{v}) := \sum_{\{u,v\}\in E} \omega(\{u,v\}).$$

• Clustering modularity is defined as

$$\mathsf{mod}(\mathcal{C}) := \frac{\sum\limits_{C \in \mathcal{C}} \sum\limits_{\substack{\{u,v\} \in E \\ u,v \in C}} \omega(\{u,v\})}{\sum\limits_{e \in E} \omega(e)} - \frac{\sum\limits_{C \in \mathcal{C}} \left(\sum\limits_{v \in C} \zeta(v)\right)^2}{4\left(\sum\limits_{e \in E} \omega(e)\right)^2}.$$

• Here, vertex weights $\zeta: V \to \mathbb{R}_{\geq 0}$ are defined as

$$\zeta(\mathbf{v}) := \sum_{\{u,v\}\in E} \omega(\{u,v\}).$$

• We have
$$-rac{1}{2} \leq \mathsf{mod}(\mathcal{C}) \leq 1$$
.

• $mod(\mathcal{C})$ can be rewritten to

$$\frac{1}{4\Omega^2} \sum_{C \in \mathcal{C}} \left[\zeta(C) \left(2\Omega - \zeta(C) \right) - 2\Omega \left(\sum_{\substack{C' \in \mathcal{C} \\ C' \neq C}} \omega(\operatorname{cut}(C, C')) \right) \right]$$

٠

• $mod(\mathcal{C})$ can be rewritten to

$$\frac{1}{4\Omega^2} \sum_{C \in \mathcal{C}} \left[\zeta(C) \left(2\Omega - \zeta(C) \right) - 2\Omega \left(\sum_{\substack{C' \in C \\ C' \neq C}} \omega(\mathsf{cut}(C, C')) \right) \right]$$

• Here,

$$\begin{split} \Omega &:= \sum_{e \in E} \omega(e), \\ \zeta(v) &:= \sum_{\{u,v\} \in E} \omega(\{u,v\}), \\ \text{cut}(C,C') &:= \{\{u,v\} \in E \mid u \in C \text{ and } v \in C'\}. \end{split}$$

٠

• $mod(\mathcal{C})$ can be rewritten to

$$\frac{1}{4\Omega^2} \sum_{C \in \mathcal{C}} \left[\zeta(C) \left(2\Omega - \zeta(C) \right) - 2\Omega \left(\sum_{\substack{C' \in \mathcal{C} \\ C' \neq C}} \omega(\mathsf{cut}(C, C')) \right) \right]$$

• Here,

$$\begin{split} \Omega &:= \sum_{e \in E} \omega(e), \\ \zeta(v) &:= \sum_{\{u,v\} \in E} \omega(\{u,v\}), \\ \operatorname{cut}(C,C') &:= \{\{u,v\} \in E \mid u \in C \text{ and } v \in C'\}. \end{split}$$

• To calculate modularity, we only need to keep track of summed vertex weights of clusters and summed edge weights between clusters.

.

• Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.

- Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.
- Then,

$$\zeta(\mathcal{C}\cup\mathcal{C}')=\zeta(\mathcal{C})+\zeta(\mathcal{C}')$$

• Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.

• Then,

$$\zeta(\mathcal{C}\cup\mathcal{C}')=\zeta(\mathcal{C})+\zeta(\mathcal{C}')$$

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

$$\frac{1}{2\Omega^2}\left(2\Omega\,\omega(\operatorname{cut}(C,C'))-\zeta(C)\,\zeta(C')\right).$$

• Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.

• Then,

$$\zeta(\mathcal{C}\cup\mathcal{C}')=\zeta(\mathcal{C})+\zeta(\mathcal{C}')$$

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

$$\frac{1}{2\Omega^2}\left(2\Omega\omega(\operatorname{cut}(\mathcal{C},\mathcal{C}'))-\zeta(\mathcal{C})\zeta(\mathcal{C}')\right).$$

• This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Start with vertices in a separate cluster: $C = \{\{v\} \mid v \in V\}$.

Match clusters to increase modularity.

Merge matched clusters (sum ω and ζ).

Match clusters to increase modularity.

Merge matched clusters (sum ω and ζ).

Match clusters to increase modularity.

Return clustering with highest modularity.

0 iterations.

Fagginger Auer, Bisseling (UU)

Final clustering.

Parallel agglomerative clustering

Q Start with all vertices being a separate cluster: C = {{v} | v ∈ V}.
Q Find a heavy matching of clusters with edge weights

$$\frac{1}{2\Omega^2} \left(2\Omega \, \omega(\operatorname{cut}(\mathcal{C}, \mathcal{C}')) - \zeta(\mathcal{C}) \, \zeta(\mathcal{C}') \right).$$

- Sextend matching to avoid getting stuck.
- Merge all matched clusters, summing ζ and ω .
- Go to step 2 until only a single cluster remains.
- Seturn encountered clustering with highest modularity.
Parallel agglomerative clustering

Q Start with all vertices being a separate cluster: C = {{v} | v ∈ V}.
Q Find a heavy matching of clusters with edge weights

$$\frac{1}{2\Omega^2}\left(2\Omega\,\omega(\operatorname{cut}(\mathcal{C},\mathcal{C}'))-\zeta(\mathcal{C})\,\zeta(\mathcal{C}')\right).$$

- Sector of the study of the stud
- Merge all matched clusters, summing ζ and ω .
- Go to step 2 until only a single cluster remains.
- O Return encountered clustering with highest modularity.

We make use of parallelism in steps 2, 3, and 4.

 For a graph G = (V, E), a matching is a collection M ⊆ E of edges that are disjoint.

- For a graph G = (V, E), a matching is a collection M ⊆ E of edges that are disjoint.
- Performing matching in parallel is problematic.

- For a graph G = (V, E), a matching is a collection M ⊆ E of edges that are disjoint.
- Performing matching in parallel is problematic.
- Disjoint edges requirement leads to serialisation.

Suppose we match vertices simultaneously.

Vertices find an unmatched neighbour...

... but generate an invalid matching.

• To solve this we create two groups of vertices: blue and red.

- To solve this we create two groups of vertices: blue and red.
- Blue vertices propose.

- To solve this we create two groups of vertices: blue and red.
- Blue vertices propose.
- **Red** vertices respond.

- To solve this we create two groups of vertices: blue and red.
- Blue vertices propose.
- **Red** vertices respond.
- Proposals that were responded to are matched.

- To solve this we create two groups of vertices: blue and red.
- Blue vertices propose.
- **Red** vertices respond.
- Proposals that were responded to are matched.
- Store matching in a map $\pi: V \to \mathbb{N}$:

$$\{u,v\} \in M \qquad \iff \qquad \pi(u) = \pi(v).$$

• The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.
- Each vertex $v \in V$ only updates
 - its colour/matching value $\pi(v)$;
 - and its proposal/response value $\sigma(v)$.

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.
- Each vertex $v \in V$ only updates
 - its colour/matching value $\pi(v)$;
 - and its proposal/response value $\sigma(v)$.
- Both π and σ are stored in 1D arrays in global memory.

• Created an implementation on the GPU using CUDA and on the CPU using TBB.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.
- Time: matching and CPU \leftrightarrow GPU data transfer, not disk I/O.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.
- Time: matching and CPU \leftrightarrow GPU data transfer, not disk I/O.
- Test set: 10th DIMACS challenge.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.
- Time: matching and CPU \leftrightarrow GPU data transfer, not disk I/O.
- Test set: 10th DIMACS challenge.
- Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla C2050 (thanks: the Little Green Machine project).

Results (scaling)

Clustering time scaling

Fagginger Auer, Bisseling (UU)

Results (time)

Results (quality)

	V	<i>E</i>	CUDA	TBB	Ovelgönne et al. (2010)
karate	34	78	0.363	0.383	0.412
jazz	198	2,742	0.314	0.369	0.444
email	1,133	5,451	0.440	0.473	0.572
PGP	10,680	24,316	0.809	0.841	0.880

Results (quality)

	V	<i>E</i>	CUDA	TBB	Ovelgönne et al. (2010)
karate	34	78	0.363	0.383	0.412
jazz	198	2,742	0.314	0.369	0.444
email	1,133	5,451	0.440	0.473	0.572
PGP	10,680	24,316	0.809	0.841	0.880

• Lower quality, because we do not use local refinement.

Results (time)

• Our algorithm is very fast for large graphs.

Results (time)

- Our algorithm is very fast for large graphs.
- CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413, modularity 0.996 clustering in 4.6 seconds.

Results (time)

- Our algorithm is very fast for large graphs.
- CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413, modularity 0.996 clustering in 4.6 seconds.
- TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity 0.974 clustering in 31 seconds.

Conclusion

• We presented a fine-grained shared-memory parallel clustering algorithm.

Conclusion

- We presented a fine-grained shared-memory parallel clustering algorithm.
- This algorithm is suitable for both multi-core CPUs and GPUs.

Conclusion

- We presented a fine-grained shared-memory parallel clustering algorithm.
- This algorithm is suitable for both multi-core CPUs and GPUs.
- The algorithm is very fast, but quality could be improved by parallel local refinement.

Questions

 \exists any questions?

• How to measure clustering quality?

- How to measure clustering quality?
- Let $C = \{C_1, \ldots, C_k\}$ and define

 e_{ij} := weighted fraction of edges between C_i and C_j .

- How to measure clustering quality?
- Let $C = \{C_1, \ldots, C_k\}$ and define

 e_{ij} := weighted fraction of edges between C_i and C_j .

• Maximise intra-cluster edges:

$$\max_{\mathcal{C}} \left(\sum_{i=1}^{k} e_{i\,i} \right)$$

- How to measure clustering quality?
- Let $C = \{C_1, \ldots, C_k\}$ and define

 e_{ij} := weighted fraction of edges between C_i and C_j .

• Maximise intra-cluster edges:

$$\max_{\mathcal{C}} \left(\sum_{i=1}^{k} e_{i\,i} \right).$$

• But this leads to $C = \{V\}$ as optimal solution!

• Define

$$a_i := \sum_{j=1}^k e_{ij}$$
 = weighted fraction of edges incident to C_i .

Define

$$a_i := \sum_{j=1}^k e_{ij} =$$
 weighted fraction of edges incident to C_i .

• Cut all edges and reconnect vertices randomly, then

 $e_{ij} \approx a_i a_j.$

Define

$$a_i := \sum_{j=1}^k e_{ij}$$
 = weighted fraction of edges incident to C_i .

• Cut all edges and reconnect vertices randomly, then

$$e_{ij} \approx a_i a_j$$
.

• Modularity measures how much better we do than the random case:

$$\operatorname{mod}(\mathcal{C}) := \sum_{i=1}^{k} \left(e_{i\,i} - a_{i}^{2} \right).$$

• For any clustering \mathcal{C} :

$$-rac{1}{2} \leq \mathsf{mod}(\mathcal{C}) \leq 1.$$

• For any clustering \mathcal{C} :

$$-rac{1}{2} \leq \mathsf{mod}(\mathcal{C}) \leq 1.$$

• Maximising modularity is strongly NP-complete (Brandes et al., 2008).

• For any clustering \mathcal{C} :

$$-rac{1}{2} \leq \mathsf{mod}(\mathcal{C}) \leq 1.$$

- Maximising modularity is strongly NP-complete (Brandes et al., 2008).
- Modularity maximisation fails to resolve small communities (Kumpula et al., 2007).

Star graphs

Agglomerative clustering slows down on star graphs.

Fagginger Auer, Bisseling (UU)

Star graphs

Merging vertices with the same neighbours is bad for clustering.

Star graphs

So we merge multiple satellites to the same centre.

• To identify star centres and satellites, we propose a centre potential.

- To identify star centres and satellites, we propose a centre potential.
- This potential is defined for vertices v as

$$\mathsf{cp}(v) := rac{\mathsf{deg}(v)^2}{\sum\limits_{\{u,v\}\in E}\mathsf{deg}(u)}.$$

- To identify star centres and satellites, we propose a centre potential.
- This potential is defined for vertices v as

$$\mathsf{cp}(v) := rac{\mathsf{deg}(v)^2}{\sum\limits_{\{u,v\}\in E} \mathsf{deg}(u)}.$$

• We use $cp(\cdot)$ to identify satellites and match these to centres.

• For a star graph where k satellites are connected to a clique of l vertices with 0 < l < k, we have that

• For a star graph where k satellites are connected to a clique of l vertices with 0 < l < k, we have that

$$\mathsf{cp}(\mathsf{satellite}) \leq rac{1}{2} \qquad \qquad \mathsf{and} \ \mathsf{cp}(\mathsf{satellite}) o \mathsf{0} \ \mathsf{as} \ k o \infty,$$

• For a star graph where k satellites are connected to a clique of l vertices with 0 < l < k, we have that

$$\begin{array}{ll} \mathsf{cp}(\mathsf{satellite}) \leq \frac{1}{2} & \qquad \mathsf{and} \ \mathsf{cp}(\mathsf{satellite}) \to 0 \ \mathsf{as} \ k \to \infty, \\ \mathsf{cp}(\mathsf{centre}) \geq \frac{4}{3} & \qquad \mathsf{and} \ \mathsf{cp}(\mathsf{centre}) \to \infty \ \mathsf{as} \ k \to \infty. \end{array}$$

Colouring vertices

• To colour vertices $v \in V$, we use for a fixed $p \in [0,1]$

$$\pi(\mathbf{v}) = \begin{cases} \text{blue} & \text{with probability } p, \\ \text{red} & \text{with probability } 1 - p. \end{cases}$$

Colouring vertices

• To colour vertices $v \in V$, we use for a fixed $p \in [0,1]$

$$\pi(v) = \begin{cases} blue & \text{with probability } p, \\ red & \text{with probability } 1 - p. \end{cases}$$

• How to choose p? Maximise the number of matched vertices.

Colouring vertices

• To colour vertices $v \in V$, we use for a fixed $p \in [0,1]$

$$\pi(v) = \begin{cases} blue & \text{with probability } p, \\ red & \text{with probability } 1 - p. \end{cases}$$

- How to choose p? Maximise the number of matched vertices.
- For a large random graphs, the expected fraction of matched vertices can be approximated by (independent of edge density)

$$2(1-p)\left(1-e^{-\frac{p}{1-p}}\right).$$

We should choose $p \approx 0.53406$.

• We should maximise the relative number of matched vertices each round.

- We should maximise the relative number of matched vertices each round.
- The number of matched vertices equals twice the number of red vertices that receive at least one proposal: maximise $\frac{2N}{|V|}$, where

N := number of **red** vertices receiving at least one proposal.

- We should maximise the relative number of matched vertices each round.
- The number of matched vertices equals twice the number of red vertices that receive at least one proposal: maximise $\frac{2N}{|V|}$, where

N := number of **red** vertices receiving at least one proposal.

• For a random graph with *n* vertices, we can approximate (independent of edge density)

$$\lim_{n\to\infty}\frac{2E(N(n))}{n}\approx 2(1-p)\left(1-e^{-\frac{p}{1-p}}\right)$$
Let $G = (\{1, \ldots, n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

Let $G = (\{1, \ldots, n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$$

Let $G = (\{1, \ldots, n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$$
$$= \sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} (1 - P(w \text{ proposes to } v | \pi(v) = \operatorname{red})) \right)$$

Let $G = (\{1, ..., n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$$

=
$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} (1 - P(w \text{ proposes to } v | \pi(v) = \operatorname{red})) \right)$$

=
$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} \left(1 - \frac{P(\pi(w) = \operatorname{blue}) P(\{v, w\} \in E)}{\operatorname{nr. of red neighb. of } w} \right) \right)$$

Let $G = (\{1, ..., n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$$

$$= \sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} (1 - P(w \text{ proposes to } v | \pi(v) = \operatorname{red})) \right)$$

$$= \sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} \left(1 - \frac{P(\pi(w) = \operatorname{blue}) P(\{v, w\} \in E)}{\operatorname{nr. of red neighb. of } w} \right) \right)$$

$$\approx n(1 - p) \left(1 - \left(1 - \frac{p d}{1 + (1 - p) (d (n - 1) - 1)} \right)^{n - 1} \right).$$

• Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:
 - ► $E' = \{\{\pi(u), \pi(v)\} \mid \{u, v\} \in E\}$ (collapse edges),

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

•
$$E' = \{ \{ \pi(u), \pi(v) \} \mid \{ u, v \} \in E \}$$
 (collapse edges),

$$\omega'(e') = \sum_{\pi(e)=e'} \omega(e)$$
 (sum edge weights),

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

•
$$E' = \{ \{ \pi(u), \pi(v) \} \mid \{ u, v \} \in E \}$$
 (collapse edges),

$$\omega'(e') = \sum_{\pi(e)=e'} \omega(e)$$
 (sum edge weights),

$$\zeta'(
u') = \sum_{\pi(
u) =
u'} \zeta(
u) \qquad (ext{sum vertex weights}),$$

►

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

•
$$E' = \{ \{ \pi(u), \pi(v) \} \mid \{ u, v \} \in E \}$$
 (collapse edges),

$$\omega'(e') = \sum_{\pi(e)=e'} \omega(e)$$
 (sum edge weights),

$$\zeta'(v') = \sum_{\pi(v)=v'} \zeta(v)$$
 (sum vertex weights),

• $\pi(u) = \pi(v)$ if and only if $\mu(u) = \mu(v)$ (compress μ to π).

►

• Implemented using the CUDA Thrust library.

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.
- First, we create π and π^{-1} from μ .

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.
- First, we create π and π^{-1} from μ .
- Then, we create the new adjacency lists and weights for G'.

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.
- First, we create π and π^{-1} from μ .
- Then, we create the new adjacency lists and weights for G'.
- Use μ , π , π^{-1} , and a bookkeeping array ρ in global GPU memory.

ρ	1	2	3	4	5	6	7	8	9	10	11	12
μ	9	2	3	22	9	9	22	2	3	3	2	4
π^{-1}												
π												

Initialise ρ sequentially and store μ .

ρ	1	2	3	4	5	6	7	8	9	10	11	12
μ	9	2	3	22	9	9	22	2	3	3	2	4
π^{-1}												
π												

Sort by increasing μ -value (sort_by_key).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	2	2	2	3	3	3	4	9	9	9	22	22
π^{-1}												
π												

Sort by increasing μ -value (sort_by_key).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	2	2	2	3	3	3	4	9	9	9	22	22
π^{-1}												
π												

Determine different matched groups (adjacent_not_equal).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	0	0	1	0	0	1	1	0	0	1	0
π^{-1}												
π												

Determine different matched groups (adjacent_not_equal).

Extract boundaries for π^{-1} (copy_index_if_nonzero).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	0	0	1	0	0	1	1	0	0	1	0
π^{-1}	1	4	7	8	11	13						
π												

Extract boundaries for π^{-1} (copy_index_if_nonzero).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	0	0	1	0	0	1	1	0	0	1	0
π^{-1}	1	4	7	8	11	13		-				
π												

Perform scan to find π indices (inclusive_scan).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	1	1	2	2	2	3	4	4	4	5	5
π^{-1}	1	4	7	8	11	13						
π												

Perform scan to find π indices (inclusive_scan).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	1	1	2	2	2	3	4	4	4	5	5
π^{-1}	1	4	7	8	11	13						
π												

Extract π as $\pi(\rho(i)) = \mu(i)$ (scatter).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	1	1	2	2	2	3	4	4	4	5	5
π^{-1}	1	4	7	8	11	13						
π	4	1	2	5	4	4	5	1	2	2	1	3

Extract π as $\pi(\rho(i)) = \mu(i)$ (scatter).

• Construct the adjacency lists of G' for $i' \in V'$ in parallel.

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(i_1, \omega_1, i_2, \omega_2, \ldots, i_k, \omega_k).$$

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(\pi(i_1),\omega_1,\pi(i_2),\omega_2,\ldots,\pi(i_k),\omega_k).$$

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(\pi(i_1),\omega_1,\pi(i_2),\omega_2,\ldots,\pi(i_k),\omega_k).$$

• Sort the neighbour list by index.

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(\pi(i_1),\omega_1,\pi(i_2),\omega_2,\ldots,\pi(i_k),\omega_k).$$

- Sort the neighbour list by index.
- Compress the neighbour list by replacing subsequences $(j', \omega_1, j', \omega_2, \dots, j', \omega_l)$ with $(j', \omega_1 + \omega_2 + \dots + \omega_l)$.