
Modularity Graph Clustering on the GPU

B. O. Fagginger Auer R. H. Bisseling

Utrecht University

April 10, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Introduction

We will perform greedy clustering of large graphs.

Clustering ≈ isolating ‘related’ groups of vertices in a graph.

Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Introduction

We will perform greedy clustering of large graphs.

Clustering ≈ isolating ‘related’ groups of vertices in a graph.

Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Introduction

We will perform greedy clustering of large graphs.

Clustering ≈ isolating ‘related’ groups of vertices in a graph.

Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

Bioinformatics: group genes
with similar expressions.

Medical imaging: image
segmentation in CT/MRI.

Market research: consumer
grouping.

Social networks: community
detection.

c© National Human Genome Research Institute

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

Bioinformatics: group genes
with similar expressions.

Medical imaging: image
segmentation in CT/MRI.

Market research: consumer
grouping.

Social networks: community
detection.

c© Alexandra Lauric

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

Bioinformatics: group genes
with similar expressions.

Medical imaging: image
segmentation in CT/MRI.

Market research: consumer
grouping.

Social networks: community
detection.

c© Georgia Tech

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Applications of Clustering

Bioinformatics: group genes
with similar expressions.

Medical imaging: image
segmentation in CT/MRI.

Market research: consumer
grouping.

Social networks: community
detection.

c© Fred Cavazza

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

Let G = (V ,E) be a graph with vertices V , edges E , and edge
weights ω : E → R>0.

The weight ω({u, v}) measures the strength of the link between
vertices u and v .

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

Let G = (V ,E) be a graph with vertices V , edges E , and edge
weights ω : E → R>0.

The weight ω({u, v}) measures the strength of the link between
vertices u and v .

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

Let G = (V ,E) be a graph with vertices V , edges E , and edge
weights ω : E → R>0.

The weight ω({u, v}) measures the strength of the link between
vertices u and v .

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

Let G = (V ,E) be a graph with vertices V , edges E , and edge
weights ω : E → R>0.

The weight ω({u, v}) measures the strength of the link between
vertices u and v .

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

Clustering modularity is defined as

mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4

(∑
e∈E

ω(e)

)2
.

Here, vertex weights ζ : V → R≥0 are defined as

ζ(v) :=
∑

{u,v}∈E

ω({u, v}).

We have −1
2 ≤ mod(C) ≤ 1.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

Clustering modularity is defined as

mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4

(∑
e∈E

ω(e)

)2
.

Here, vertex weights ζ : V → R≥0 are defined as

ζ(v) :=
∑

{u,v}∈E

ω({u, v}).

We have −1
2 ≤ mod(C) ≤ 1.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

Clustering modularity is defined as

mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4

(∑
e∈E

ω(e)

)2
.

Here, vertex weights ζ : V → R≥0 are defined as

ζ(v) :=
∑

{u,v}∈E

ω({u, v}).

We have −1
2 ≤ mod(C) ≤ 1.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

mod(C) can be rewritten to

1

4 Ω2

∑
C∈C

ζ(C) (2 Ω− ζ(C))− 2 Ω

∑
C ′∈C
C ′ 6=C

ω(cut(C ,C ′))

 .

Here,

Ω :=
∑
e∈E

ω(e),

ζ(v) :=
∑

{u,v}∈E

ω({u, v}),

cut(C ,C ′) := {{u, v} ∈ E | u ∈ C and v ∈ C ′}.

To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

mod(C) can be rewritten to

1

4 Ω2

∑
C∈C

ζ(C) (2 Ω− ζ(C))− 2 Ω

∑
C ′∈C
C ′ 6=C

ω(cut(C ,C ′))

 .

Here,

Ω :=
∑
e∈E

ω(e),

ζ(v) :=
∑

{u,v}∈E

ω({u, v}),

cut(C ,C ′) := {{u, v} ∈ E | u ∈ C and v ∈ C ′}.

To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity clustering

mod(C) can be rewritten to

1

4 Ω2

∑
C∈C

ζ(C) (2 Ω− ζ(C))− 2 Ω

∑
C ′∈C
C ′ 6=C

ω(cut(C ,C ′))

 .

Here,

Ω :=
∑
e∈E

ω(e),

ζ(v) :=
∑

{u,v}∈E

ω({u, v}),

cut(C ,C ′) := {{u, v} ∈ E | u ∈ C and v ∈ C ′}.

To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Start with vertices in a separate cluster: C = {{v} | v ∈ V }.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Match clusters to increase modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Merge matched clusters (sum ω and ζ).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Match clusters to increase modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Merge matched clusters (sum ω and ζ).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Match clusters to increase modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering

Return clustering with highest modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

0 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

11 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

21 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

26 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

33 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Agglomerative clustering (netherlands)

Final clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Parallel agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.
2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Extend matching to avoid getting stuck.

4 Merge all matched clusters, summing ζ and ω.

5 Go to step 2 until only a single cluster remains.

6 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2, 3, and 4.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Parallel agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.
2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Extend matching to avoid getting stuck.

4 Merge all matched clusters, summing ζ and ω.

5 Go to step 2 until only a single cluster remains.

6 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2, 3, and 4.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

For a graph G = (V ,E), a matching is a collection M ⊆ E of edges
that are disjoint.

Performing matching in parallel is problematic.

Disjoint edges requirement leads to serialisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

For a graph G = (V ,E), a matching is a collection M ⊆ E of edges
that are disjoint.

Performing matching in parallel is problematic.

Disjoint edges requirement leads to serialisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

For a graph G = (V ,E), a matching is a collection M ⊆ E of edges
that are disjoint.

Performing matching in parallel is problematic.

Disjoint edges requirement leads to serialisation.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

9

8

6
5

7
3

1

4

2

Suppose we match vertices simultaneously.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

9

8

6
5

7
3

1

4

2

Vertices find an unmatched neighbour. . .

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching problems

9

8

6
5

7
3

1

4

2

. . . but generate an invalid matching.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Store matching in a map π : V → N:

{u, v} ∈ M ⇐⇒ π(u) = π(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Store matching in a map π : V → N:

{u, v} ∈ M ⇐⇒ π(u) = π(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Store matching in a map π : V → N:

{u, v} ∈ M ⇐⇒ π(u) = π(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Store matching in a map π : V → N:

{u, v} ∈ M ⇐⇒ π(u) = π(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Store matching in a map π : V → N:

{u, v} ∈ M ⇐⇒ π(u) = π(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates

I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates

I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates
I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates
I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π - - - - - - - - -
σ - - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ - - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 - - 3 6 - 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 b 5 5 3 2 r
σ 3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ 3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - 1 - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π 1 2 3 1 5 5 3 2 d
σ 4 - - 1 - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (scaling)

 10

 20

 30

 40

 50

 60

 70
 80
 90

 100

 1 2 4 8 16

R
e

la
ti
v
e

 c
lu

s
te

ri
n
g

 t
im

e
 (

%
)

Number of CPU threads

Clustering time scaling

linear
2

15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (time)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
lu

s
te

ri
n
g

 t
im

e
 (

s
)

Number of graph edges |E|

Clustering time

3*10
-7

 |E|
CUDA

TBB

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (quality)

|V | |E | CUDA TBB Ovelgönne et al. (2010)

karate 34 78 0.363 0.383 0.412
jazz 198 2,742 0.314 0.369 0.444
email 1,133 5,451 0.440 0.473 0.572
PGP 10,680 24,316 0.809 0.841 0.880

Lower quality, because we do not use local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (quality)

|V | |E | CUDA TBB Ovelgönne et al. (2010)

karate 34 78 0.363 0.383 0.412
jazz 198 2,742 0.314 0.369 0.444
email 1,133 5,451 0.440 0.473 0.572
PGP 10,680 24,316 0.809 0.841 0.880

Lower quality, because we do not use local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Questions

∃ any questions?

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

How to measure clustering quality?

Let C = {C1, . . . ,Ck} and define

ei j := weighted fraction of edges between Ci and Cj .

Maximise intra-cluster edges:

max
C

(
k∑

i=1

ei i

)
.

But this leads to C = {V } as optimal solution!

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

How to measure clustering quality?

Let C = {C1, . . . ,Ck} and define

ei j := weighted fraction of edges between Ci and Cj .

Maximise intra-cluster edges:

max
C

(
k∑

i=1

ei i

)
.

But this leads to C = {V } as optimal solution!

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

How to measure clustering quality?

Let C = {C1, . . . ,Ck} and define

ei j := weighted fraction of edges between Ci and Cj .

Maximise intra-cluster edges:

max
C

(
k∑

i=1

ei i

)
.

But this leads to C = {V } as optimal solution!

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

How to measure clustering quality?

Let C = {C1, . . . ,Ck} and define

ei j := weighted fraction of edges between Ci and Cj .

Maximise intra-cluster edges:

max
C

(
k∑

i=1

ei i

)
.

But this leads to C = {V } as optimal solution!

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

Define

ai :=
k∑

j=1

ei j = weighted fraction of edges incident to Ci .

Cut all edges and reconnect vertices randomly, then

ei j ≈ ai aj .

Modularity measures how much better we do than the random case:

mod(C) :=
k∑

i=1

(
ei i − a2

i

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

Define

ai :=
k∑

j=1

ei j = weighted fraction of edges incident to Ci .

Cut all edges and reconnect vertices randomly, then

ei j ≈ ai aj .

Modularity measures how much better we do than the random case:

mod(C) :=
k∑

i=1

(
ei i − a2

i

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

Define

ai :=
k∑

j=1

ei j = weighted fraction of edges incident to Ci .

Cut all edges and reconnect vertices randomly, then

ei j ≈ ai aj .

Modularity measures how much better we do than the random case:

mod(C) :=
k∑

i=1

(
ei i − a2

i

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

For any clustering C:

−1

2
≤ mod(C) ≤ 1.

Maximising modularity is strongly NP-complete (Brandes et al.,
2008).

Modularity maximisation fails to resolve small communities (Kumpula
et al., 2007).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

For any clustering C:

−1

2
≤ mod(C) ≤ 1.

Maximising modularity is strongly NP-complete (Brandes et al.,
2008).

Modularity maximisation fails to resolve small communities (Kumpula
et al., 2007).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Modularity

For any clustering C:

−1

2
≤ mod(C) ≤ 1.

Maximising modularity is strongly NP-complete (Brandes et al.,
2008).

Modularity maximisation fails to resolve small communities (Kumpula
et al., 2007).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Star graphs

Agglomerative clustering slows down on star graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Star graphs

Merging vertices with the same neighbours is bad for clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Star graphs

So we merge multiple satellites to the same centre.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

To identify star centres and satellites, we propose a centre potential.

This potential is defined for vertices v as

cp(v) :=
deg(v)2∑

{u,v}∈E

deg(u)
.

We use cp(·) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

To identify star centres and satellites, we propose a centre potential.

This potential is defined for vertices v as

cp(v) :=
deg(v)2∑

{u,v}∈E

deg(u)
.

We use cp(·) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

To identify star centres and satellites, we propose a centre potential.

This potential is defined for vertices v as

cp(v) :=
deg(v)2∑

{u,v}∈E

deg(u)
.

We use cp(·) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Colouring vertices

To colour vertices v ∈ V , we use for a fixed p ∈ [0, 1]

π(v) =

{
blue with probability p,
red with probability 1− p.

How to choose p? Maximise the number of matched vertices.

For a large random graphs, the expected fraction of matched vertices
can be approximated by (independent of edge density)

2 (1− p)
(
1− e−

p
1−p

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Colouring vertices

To colour vertices v ∈ V , we use for a fixed p ∈ [0, 1]

π(v) =

{
blue with probability p,
red with probability 1− p.

How to choose p? Maximise the number of matched vertices.

For a large random graphs, the expected fraction of matched vertices
can be approximated by (independent of edge density)

2 (1− p)
(
1− e−

p
1−p

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Colouring vertices

To colour vertices v ∈ V , we use for a fixed p ∈ [0, 1]

π(v) =

{
blue with probability p,
red with probability 1− p.

How to choose p? Maximise the number of matched vertices.

For a large random graphs, the expected fraction of matched vertices
can be approximated by (independent of edge density)

2 (1− p)
(
1− e−

p
1−p

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100F
ra

ct
io

n
of

 m
ax

im
um

 v
al

ue
 (

%
)

Fraction of vertices that are blue (%)

Influence of relative blue/red group size

Matching weight
Matching size
Matching time

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100F
ra

ct
io

n
of

 m
at

ch
ed

 v
er

tic
es

 (
%

)

Fraction of vertices that are blue (%)

Influence of relative blue/red group size

Observed
Equation (2)

We should choose p ≈ 0.53406.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

We should maximise the relative number of matched vertices each
round.

The number of matched vertices equals twice the number of red
vertices that receive at least one proposal: maximise 2 N

|V | , where

N := number of red vertices receiving at least one proposal.

For a random graph with n vertices, we can approximate
(independent of edge density)

lim
n→∞

2 E (N(n))

n
≈ 2 (1− p)

(
1− e−

p
1−p

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

We should maximise the relative number of matched vertices each
round.

The number of matched vertices equals twice the number of red
vertices that receive at least one proposal: maximise 2 N

|V | , where

N := number of red vertices receiving at least one proposal.

For a random graph with n vertices, we can approximate
(independent of edge density)

lim
n→∞

2 E (N(n))

n
≈ 2 (1− p)

(
1− e−

p
1−p

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

We should maximise the relative number of matched vertices each
round.

The number of matched vertices equals twice the number of red
vertices that receive at least one proposal: maximise 2 N

|V | , where

N := number of red vertices receiving at least one proposal.

For a random graph with n vertices, we can approximate
(independent of edge density)

lim
n→∞

2 E (N(n))

n
≈ 2 (1− p)

(
1− e−

p
1−p

)
.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1, . . . , n},E) with P({v ,w} ∈ E) = d for d ∈]0, 1]. Then
E (N(n)) is given by

∑
v∈V

P(π(v) = red) P(v is proposed to | π(v) = red)

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(1− P(w proposes to v | π(v) = red))

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(
1− P(π(w) = blue) P({v ,w} ∈ E)

nr. of red neighb. of w

)
≈ n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n − 1)− 1)

)n−1
)

.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1, . . . , n},E) with P({v ,w} ∈ E) = d for d ∈]0, 1]. Then
E (N(n)) is given by∑

v∈V

P(π(v) = red) P(v is proposed to | π(v) = red)

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(1− P(w proposes to v | π(v) = red))

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(
1− P(π(w) = blue) P({v ,w} ∈ E)

nr. of red neighb. of w

)
≈ n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n − 1)− 1)

)n−1
)

.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1, . . . , n},E) with P({v ,w} ∈ E) = d for d ∈]0, 1]. Then
E (N(n)) is given by∑

v∈V

P(π(v) = red) P(v is proposed to | π(v) = red)

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(1− P(w proposes to v | π(v) = red))

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(
1− P(π(w) = blue) P({v ,w} ∈ E)

nr. of red neighb. of w

)
≈ n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n − 1)− 1)

)n−1
)

.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1, . . . , n},E) with P({v ,w} ∈ E) = d for d ∈]0, 1]. Then
E (N(n)) is given by∑

v∈V

P(π(v) = red) P(v is proposed to | π(v) = red)

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(1− P(w proposes to v | π(v) = red))

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(
1− P(π(w) = blue) P({v ,w} ∈ E)

nr. of red neighb. of w

)

≈ n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n − 1)− 1)

)n−1
)

.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

Choosing p

Let G = ({1, . . . , n},E) with P({v ,w} ∈ E) = d for d ∈]0, 1]. Then
E (N(n)) is given by∑

v∈V

P(π(v) = red) P(v is proposed to | π(v) = red)

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(1− P(w proposes to v | π(v) = red))

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(
1− P(π(w) = blue) P({v ,w} ∈ E)

nr. of red neighb. of w

)
≈ n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n − 1)− 1)

)n−1
)

.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:

I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:

I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),

I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 1 2 3 4 5 6 7 8 9 10 11 12

µ 9 2 3 22 9 9 22 2 3 3 2 4

π−1

π

Initialise ρ sequentially and store µ.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 1 2 3 4 5 6 7 8 9 10 11 12

µ 9 2 3 22 9 9 22 2 3 3 2 4

π−1

π

Sort by increasing µ-value (sort by key).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 2 2 2 3 3 3 4 9 9 9 22 22

π−1

π

Sort by increasing µ-value (sort by key).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 2 2 2 3 3 3 4 9 9 9 22 22

π−1

π

Determine different matched groups (adjacent not equal).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1

π

Determine different matched groups (adjacent not equal).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1

π

Extract boundaries for π−1 (copy index if nonzero).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1 1 4 7 8 11 13

π

Extract boundaries for π−1 (copy index if nonzero).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1 1 4 7 8 11 13

π

Perform scan to find π indices (inclusive scan).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π

Perform scan to find π indices (inclusive scan).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π

Extract π as π(ρ(i)) = µ(i) (scatter).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π 4 1 2 5 4 4 5 1 2 2 1 3

Extract π as π(ρ(i)) = µ(i) (scatter).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(i1, ω1, i2, ω2, . . . , ik , ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(π(i1), ω1, π(i2), ω2, . . . , π(ik), ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(π(i1), ω1, π(i2), ω2, . . . , π(ik), ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(π(i1), ω1, π(i2), ω2, . . . , π(ik), ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012

	Introduction
	Modularity
	Agglomerative clustering
	GPU matching
	Results
	Conclusion
	Modularity derivation
	Star graphs
	Colouring vertices
	GPU coarsening

