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Introduction

@ We will perform greedy clustering of large graphs.
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Introduction

@ We will perform greedy clustering of large graphs.

o Clustering ~ isolating ‘related’ groups of vertices in a graph.
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Introduction

@ We will perform greedy clustering of large graphs.
o Clustering ~ isolating ‘related’ groups of vertices in a graph.

@ Our primary interests are speed and parallelisation.
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Applications of Clustering

@ Bioinformatics: group genes
with similar expressions.

@© National Human Genome Research Institute
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Applications of Clustering

@ Bioinformatics: group genes
with similar expressions.

@ Medical imaging: image
segmentation in CT/MRI.

98/
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@© Alexandra Lauric
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Applications of Clustering

@ Bioinformatics: group genes
with similar expressions.

@ Medical imaging: image
segmentation in CT/MRI.

@ Market research: consumer
grouping.

© Georgia Tech
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Applications of Clustering

Social Media Landscape

@ Bioinformatics: group genes D uia
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with similar expressions. Y °°-.-:M
@ Medical imaging: image P e
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segmentation in CT/MRI.
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@ Market research: consumer =;.=~»_ @Mu °
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@ Social networks: community

detection.
© Fred Cavazza
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Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.
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Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.

@ The weight w({u, v}) measures the strength of the link between
vertices u and v.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.

@ The weight w({u, v}) measures the strength of the link between
vertices u and v.

@ A clustering of G is a partitioning C of V:

V= U C as a disjoint union.
ceC
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Modularity

e Let G = (V, E) be a graph with vertices V, edges E, and edge
weights w : E — Ryp.

@ The weight w({u, v}) measures the strength of the link between
vertices u and v.

@ A clustering of G is a partitioning C of V:

V= U C as a disjoint union.
ceC

@ Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.
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Modularity clustering

@ Clustering modularity is defined as

&g s (gaw)
el eg_:w(e) ! 4 ((EjEw(e))2 |

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



Modularity clustering

@ Clustering modularity is defined as

&g s (gaw)
el eg_:w(e) ! 4 (E}Ew(e))2 |

@ Here, vertex weights ( : V' — R>q are defined as

C(v):= Y w{uv})

{u,v}€E
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Modularity clustering

@ Clustering modularity is defined as

&g s (gaw)
el eg_:w(e) ! 4 (E};«z(e))2 |

@ Here, vertex weights ( : V' — R>q are defined as

C(v):= Y w{uv})

{u,v}€E

@ We have —% < mod(C) < 1.
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Modularity clustering

@ mod(C) can be rewritten to

4922 C)(22-¢(0) —29 | Y wlcut(C, C"))
ceC CC’/;iCC
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Modularity clustering

@ mod(C) can be rewritten to

492 ST leo)ea-¢(0) -2 | 3 wleut(c, )
ceC c’ec
C'#C
@ Here,

Q:=> wle),

ecE

)= w({uv})

{u,v}€E
cut(C,C"):={{u,v} € E|ue Candve ('}
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Modularity clustering

@ mod(C) can be rewritten to

4922 C)(22-¢(0) —29 | Y wlcut(C, C"))
ceC CC’/;éCC

@ Here,

Q:=> wle),

ecE
(V)= Y w{uv})
{u,v}€E
cut(C,C"):={{u,v} € E|ue Candve ('}
@ To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.
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Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.

@ Then,
((cuc)=¢(C)+¢(c)

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((cuc)=¢(C)+¢(c)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

1

o (29w(cut(C, ') = <(C) C(Cl)>'
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Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((cuc)=¢(C)+¢(c)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

2_£122 (29w(cut(c, ') = <(C) C(Cl)>'

@ This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).
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Agglomerative clustering

Start with vertices in a separate cluster: C = {{v} | v € V}.
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Agglomerative clustering

Match clusters to increase modularity.
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Agglomerative clustering

Merge matched clusters (sum w and ().
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Agglomerative clustering

Match clusters to increase modularity.
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Agglomerative clustering

Merge matched clusters (sum w and ().
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Agglomerative clustering

Match clusters to increase modularity.
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Agglomerative clustering

Return clustering with highest modularity.
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Agglomerative clustering (netherlands)

0 iterations.
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Agglomerative clustering (netherlands)

11 iterations.
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Agglomerative clustering (netherlands)

21 iterations.
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Agglomerative clustering (netherlands)

26 iterations.
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Agglomerative clustering (netherlands)

33 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering



Agglomerative clustering (netherlands)

Final clustering.
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Parallel agglomerative clustering

© Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

L (20u(an(c.C) - (O)(C)).

© Extend matching to avoid getting stuck.
© Merge all matched clusters, summing ¢ and w.
© Go to step 2 until only a single cluster remains.

@ Return encountered clustering with highest modularity.
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Parallel agglomerative clustering

© Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

L (20u(an(c.C) - (O)(C)).

© Extend matching to avoid getting stuck.
© Merge all matched clusters, summing ¢ and w.
© Go to step 2 until only a single cluster remains.

@ Return encountered clustering with highest modularity.

We make use of parallelism in steps 2, 3, and 4.
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GPU matching problems

e For a graph G = (V, E), a matching is a collection M C E of edges
that are disjoint.
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GPU matching problems

e For a graph G = (V, E), a matching is a collection M C E of edges
that are disjoint.

@ Performing matching in parallel is problematic.
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GPU matching problems

e For a graph G = (V, E), a matching is a collection M C E of edges
that are disjoint.

@ Performing matching in parallel is problematic.

@ Disjoint edges requirement leads to serialisation.
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GPU matching problems

Suppose we match vertices simultaneously.
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GPU matching problems

2

5

Vertices find an unmatched neighbour. ..
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GPU matching problems

... but generate an invalid matching.
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GPU matching

@ To solve this we create two groups of vertices: blue and red.
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GPU matching

@ To solve this we create two groups of vertices: blue and red.

@ Blue vertices propose.
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GPU matching

@ To solve this we create two groups of vertices: blue and red.
@ Blue vertices propose.

@ Red vertices respond.
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GPU matching

To solve this we create two groups of vertices: blue and red.
Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.
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GPU matching

To solve this we create two groups of vertices: blue and red.
Blue vertices propose.
Red vertices respond.

Proposals that were responded to are matched.

Store matching ina map7:V — N:

{u,v}eM = m(u) = 7w(v).
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GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.
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GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.
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GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.

@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



GPU matching (implementation)

@ The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.
@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).

@ Both 7 and ¢ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



GPU matching (algorithm)

1 2 8
4
Colour
Propose 9
Respond 5
Match 6
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GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
7m|b r r b b r b b r
o - - - - - - - - -
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GPU matching (algorithm)

1 8
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
#|b r r b b r b b r
c|!3 - - 3 6 - 3 2 -
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GPU matching (algorithm)

1 8
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
#=|b r r b b r b b r
c|!3 8 7 3 6 5 3 2 -
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GPU matching (algorithm)

8
! 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|b 2 3 b 5 5 3 2 r
c|3 8 7 3 6 5 3 2 -
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GPU matching (algorithm)

8
. 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl3 8 7 3 6 5 3 2 -
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GPU matching (algorithm)

8
. 2
4
Colour
Propose 5
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl- - - - - - - - d
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GPU matching (algorithm)

8
. 2
4
Colour
Propose 5
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl- - - - - - - - d
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GPU matching (algorithm)

8
. 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
©=|r 2 3 r 5 5 3 2 d
cl- - - - - - - - d
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GPU matching (algorithm)

8
! 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
~|b 2 3 r 5 5 3 2 d
cl- - - - - - - - d
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GPU matching (algorithm)

8
v 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
~|b 2 3 r 5 5 3 2 d
ola - - - - - -
April 10, 2012
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GPU matching (algorithm)

8
v 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
/b 2 3 r 5 5 3 2 d
cl4 - - 1 - - - - -
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GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
|1 2 3 1 5 5 3 2 d
cld4 - - 1 - - - - -
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.

e Time: matching and CPU < GPU data transfer, not disk I/O.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).
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Results (scaling)

Clustering time scaling
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Results (time)

Clustering time

10° ¢
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102 [ CUDA v+ ]
. TBB :--x--- % ]
- % N X
10 .
@ I
-Gé 107 F
20T oy .
= +
R ]
) x 3%
TR ——— -
104 F -
10—5 [ o NI Ll Al

10" 102 10° 10* 10° 10 107 10® 10°
Number of graph edges |E|

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 198 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880
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Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 198 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880

@ Lower quality, because we do not use local refinement.
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Results (time)

@ Our algorithm is very fast for large graphs.
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Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.
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Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

e TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity
0.974 clustering in 31 seconds.
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Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.
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Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.
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Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.

@ The algorithm is very fast, but quality could be improved by parallel
local refinement.
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Questions

3 any questions?
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Modularity

@ How to measure clustering quality?
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Modularity

@ How to measure clustering quality?
o Let C={GC,..., Cc} and define

ejj := weighted fraction of edges between (; and C;.
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Modularity

@ How to measure clustering quality?
o Let C={GC,..., Cc} and define

ejj := weighted fraction of edges between (; and C;.

@ Maximise intra-cluster edges:

k
mCE']X (Zl [H ,') .
=
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Modularity

How to measure clustering quality?
Let C = {G,..., Ck} and define

ejj := weighted fraction of edges between (; and C;.

@ Maximise intra-cluster edges:

k
mch (Zl [H ,') .
=

@ But this leads to C = {V'} as optimal solution!
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Modularity

@ Define

k
aj = Z ejj = weighted fraction of edges incident to C;.
j=1
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Modularity

@ Define

k
aj = Z ejj = weighted fraction of edges incident to C;.
j=1

o Cut all edges and reconnect vertices randomly, then

e,~J- =~ aj aj.
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Modularity

@ Define

k
aj = Z ejj = weighted fraction of edges incident to C;.
j=1
o Cut all edges and reconnect vertices randomly, then
€jj =~ aja;.
@ Modularity measures how much better we do than the random case:

mod(C) := Zk: (e,-,- - a?).

i=1
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Modularity

e For any clustering C:

1
—3 <mod(C) < 1.
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Modularity

e For any clustering C:
1

e Maximising modularity is strongly NP-complete (Brandes et al.,
2008).
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Modularity

e For any clustering C:
1

e Maximising modularity is strongly NP-complete (Brandes et al.,
2008).

@ Modularity maximisation fails to resolve small communities (Kumpula
et al., 2007).
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Star graphs

Agglomerative clustering slows down on star graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



Star graphs

Merging vertices with the same neighbours is bad for clustering.
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Star graphs

So we merge multiple satellites to the same centre.
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Centre potential

o To identify star centres and satellites, we propose a centre potential.
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Centre potential

o To identify star centres and satellites, we propose a centre potential.

@ This potential is defined for vertices v as
deg(v)?
cp(v) = ———"——"——.
V)= dealw)

{u,v}€E
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Centre potential

o To identify star centres and satellites, we propose a centre potential.
@ This potential is defined for vertices v as
deg(v)?
cp(v) i = ——=——"—"——.
> deg(u)

{u,v}€E

o We use cp(-) to identify satellites and match these to centres.
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Centre potential
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Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that
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Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that

and cp(satellite) — 0 as k — oo,

N

cp(satellite) <
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Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that
cp(satellite) < and cp(satellite) — 0 as k — oo,

cp(centre) > and cp(centre) — oo as k — oc.

WA N| =
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Colouring vertices

@ To colour vertices v € V, we use for a fixed p € [0, 1]

(v) = blue with probability p,
| red with probability 1 — p.
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Colouring vertices

@ To colour vertices v € V, we use for a fixed p € [0, 1]

(v) = blue with probability p,
| red with probability 1 — p.

@ How to choose p? Maximise the number of matched vertices.
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Colouring vertices

@ To colour vertices v € V, we use for a fixed p € [0, 1]

(v) = blue with probability p,
| red with probability 1 — p.

@ How to choose p? Maximise the number of matched vertices.

@ For a large random graphs, the expected fraction of matched vertices
can be approximated by (independent of edge density)

2(1 - p) (1—efﬁ).
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Choosing p

g Influence of relative blue/red group size S Influence of relative blue/red group size

< 100 > as w100

=1 3 Observed ——

S 80 F £ 80 Equation (2) -

E > +

g2 60 Matching weight —— 2 60| N

% Matching size - 5 A

g 4 N Matching time ------ E ‘g 40 %

5 % X — g

g 2 Kok X S 20

= i)

3 0 L L L L g 0 L L L L

T 0 20 40 60 80 100 T 0 20 40 60 80 100
Fraction of vertices that are blue (%) Fraction of vertices that are blue (%)

We should choose p ~ 0.53406.
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Choosing p

@ We should maximise the relative number of matched vertices each
round.
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Choosing p

@ We should maximise the relative number of matched vertices each
round.

@ The number of matched vertices equals twice the number of red

vertices that receive at least one proposal: maximise % where

N := number of red vertices receiving at least one proposal.
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Choosing p

@ We should maximise the relative number of matched vertices each

round.
@ The number of matched vertices equals twice the number of red

vertices that receive at least one proposal: maximise % where

N := number of red vertices receiving at least one proposal.

@ For a random graph with n vertices, we can approximate
(independent of edge density)

o 2E(N(n)

n—oo n
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Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) = d for d €]0,1]. Then
E(N(n)) is given by
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Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) = d for d €]0,1]. Then
E(N(n)) is given by

Z P(m(v) = red) P(v is proposed to | w(v) = red)
veVv
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Choosing p
Let G = ({1,...,n}, E) with P({v,w} € E) =d for d €]0,1]. Then
E(N(n)) is given by

Z P(n(v) = red) P(v is proposed to | w(v) = red)
veVv

= P(n(v) = red) (1 - H (1 — P(w proposes to v | m(v) = red)))

weV\{v}
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Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) =d for d €]0,1]. Then
E(N(n)) is given by

Z P(n(v) = red) P(v is proposed to | w(v) = red)

veVv

= P(n(v) = red) (1 - H (1 — P(w proposes to v | m(v) = red)))
vev weV\{v}

B B P(m(w) = blue) P({v,w} € E)

= P(r(v) = red) (1 a H (1 "~ nr. of red neighb. of w ))
ve weV\{v}
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Choosing p

Let G = ({1,...,n}, E) with P({v,w} € E) = d for d €]0,1]. Then
E(N(n)) is given by

Z P(n(v) = red) P(v is proposed to | w(v) = red)

weV\{v}

P(w(w) = blue) P({v, w} € E)
H (1 N nr. of red neighb. of w ))

= P(n(v) = red) (1 - H (1 — P(w proposes to v | m(v) = red)))

weV\{v}

i pd n—1
~n(l—p) (1_(1_1+(1—p)(d("—1)_1)> )

= P(n(v) = red) (1 -
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
» E'={{m(u),7(v)} | {u,v} € E} (collapse edges),
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
» E'={{m(u),7(v)} | {u,v} € E} (collapse edges),

| 4

W'(e') = Z w(e) (sum edge weights),

T(e)=e’
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (") and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V)= Z ¢(v) (sum vertex weights),

w(v)=v’
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (") and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V) = Z ¢(v) (sum vertex weights),

w(v)=v’

» 7(u) = 7(v) if and only if pu(u) = u(v) (compress p to 7).
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GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
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GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.

@ View G as a collection of adjacency lists for each vertex.
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GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.

o First, we create  and 7! from p.
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GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.

o First, we create  and 7! from p.

@ Then, we create the new adjacency lists and weights for G'.
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GPU coarsening (implementation)

Implemented using the CUDA Thrust library.
View G as a collection of adjacency lists for each vertex.
First, we create  and 7! from p.

Then, we create the new adjacency lists and weights for G'.

Use i, m, %, and a bookkeeping array p in global GPU memory.
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GPU coarsening (algorithm)

10

11

12

22

SHIERE NS
N

Initialise p sequentially and store u.
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GPU coarsening (algorithm)

p 1 2 4 |5 |6 |7 10 | 11 | 12
" 2 2219 |9 |22 3 (2 |4
7T_1
7T
Sort by increasing p-value (sort_by_key).
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GPU coarsening (algorithm)

p 2 |8 11 9 10 | 12 4 |7
" 2 |2 |2 3 (3 |4 22 | 22
7T_1
7T
Sort by increasing p-value (sort_by_key).
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GPU coarsening (algorithm)

p 2 |8 |11 9 |10 |12 4 |7
I 2 |12 |2 3 (3 |4 22 | 22
p—
T
Determine different matched groups (adjacent not_equal).
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GPU coarsening (algorithm)

p 8 |11 9 |10 |12 7
1 1 /0 |0 0 |0 |1 0
p—
T
Determine different matched groups (adjacent not_equal).
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GPU coarsening (algorithm)

p 8 |11 9 |10 |12 7
1 1 /0 |0 0 |0 |1 0
p—
T
Extract boundaries for 7=1 (copy_index_if nonzero).
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GPU coarsening (algorithm)

p 8 11 |3 9 10 | 12 7
I 1 0 0 1 0 0 1 0
1 [4 |7 |8 [11]13
s
Extract boundaries for 7=1 (copy_index_if nonzero).
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GPU coarsening (algorithm)

p 8 [11]3 |9 [10|12]1 [5 |6 |4 |7
w |1 ]o o |1 oo |1 ]1 o o |1 |O
111 [4 [7 [8 [11]13

T

Perform scan to find 7 indices (inclusive_scan).
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GPU coarsening (algorithm)

p 11 |3 9 10 | 12 7
I 1 1 1 2 2 2 3 5
a1]1 7 |8 |11 13
T
Perform scan to find 7 indices (inclusive_scan).
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GPU coarsening (algorithm)

p 1113 |9 10 | 12 7
I 1 1 1 2 |2 |2 |3 5
1 7 18 [11]13
m
Extract m as w(p(i)) = u(i) (scatter).
Fagginger Auer, Bisseling (UU) GPU Graph Clustering April 10, 2012



GPU coarsening (algorithm)

p |2 |8 [11[3 |9 |10]12[1 [5 |6 |4 |7
po |11 |1 ]2 2 |3 |4 |4 |4 |5 |5
|1 |4 |7 [8 |11]13

~ |4 |1 ]2 [5 |4 |4 |5 [1 ][22 ]1 |3 |

Extract 7 as w(p(i)) = p(i) (scatter).
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.
i y p
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m™ (") + -+ Cp(r (T + 1) = 1)).
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m™ (") + -+ Cp(r (T + 1) = 1)).
o Gather weighted neighbours of p(7=%(i")) to p(m~1(i’ + 1) — 1):

(i, w1, 2, w2, ..., ik, Wk).
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:
¢'(i") = Clp(m™ (") + -+ Cp(r (T + 1) = 1)).
o Gather weighted neighbours of p(7=%(i")) to p(m~1(i’ + 1) — 1):

(71'(/'1),{.01,7['(/2),&)2, e ,W(ik),wk).
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:
(") = (1 (N) + -+ C(p(r (i + 1) = 1))
o Gather weighted neighbours of p(7~1(i")) to p(7~1(i" + 1) — 1):
(m(ir), w1, m(i2), wa, - - ., w(ik), wi)-

@ Sort the neighbour list by index.
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

@ Sum vertex weights:
(1) = Clp(r (")) + -+ C(p(r (i + 1) = 1)).
o Gather weighted neighbours of p(7~1(i")) to p(7~1(i" + 1) — 1):
(m(ir), w1, m(i2), wa, - - ., w(ik), wi)-

@ Sort the neighbour list by index.

@ Compress the neighbour list by replacing subsequences
(j/awlvj,7w27 s 7././"")/) with (jlawl Fwr+... .+ UJ/).
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