
Matrix Partitioning

New developments in sparse matrix partitioning
for parallel computations

Rob H. Bisseling
Mathematical Institute, Utrecht University

Daan M. Pelt
Centrum voor Wiskunde en Informatica, Amsterdam

Daan Pelt

Matrix Partitioning

1 Introduction
Parallel Sparse Matrix-Vector Multiplication
Matrix Partitioning

2 Optimal bipartitioning
Branch-and-bound

3 Heuristic solutions
A new heuristic model

4 Conclusions and outlook

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Sparse matrices

An m × n matrix with N nonzeroes is called sparse if a large number of its
elements is equal to zero (N � mn).

Matrix-vector multiplication

Dense matrix-vector multiplication: O(mn)

Sparse matrix-vector multiplication: O(N)

Parallel sparse matrix-vector multiplication: ideally, O(N
p)

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Parallel Algorithm: Matrix and vector distribution

5 8 9

5 3

2

1

6

5 9

4 1

3

A

2 1 1 4 3 ~v

~u

6

5 9

4 1

3

3

2

1

0

0 1 2

A0

5 8 9

5 3

2

1

4

3

2

0

2 3 4

A1

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Parallel Algorithm: Fanout

5 8 9

5 3

2

1

6

5 9

4 1

3

A

2 1 1 4 3 ~v

~u

6

5 9

4 1

3

3

2

1

0

0 1 2

A0

5 8 9

5 3

2

1

4

3

2

0

2 3 4

A1

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Parallel Algorithm: Local Multiplication

5 8 9

5 3

2

1

6

5 9

4 1

3

A

2 1 1 4 3 ~v

~u

6

5 9

4 1

3

3

2

1

0

0 1 2

A0

5 8 9

5 3

2

1

4

3

2

0

2 3 4

A1

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Parallel Algorithm: Fanin

5 8 9

5 3

2

1

6

5 9

4 1

3

A

2 1 1 4 3 ~v

~u

6

5 9

4 1

3

3

2

1

0

0 1 2

A0

5 8 9

5 3

2

1

4

3

2

0

2 3 4

A1

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Parallel Algorithm: Partial Sum Summation

5 8 9

5 3

2

1

6

5 9

4 1

3

A

2 1 1 4 3 ~v

64

41

22

9

6

~u

6

5 9

4 1

3

3

2

1

0

0 1 2

A0

5 8 9

5 3

2

1

4

3

2

0

2 3 4

A1

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Problem

Balance work evenly between processors during local multiplication

Avoid communication during fanout and fanin

No need to avoid global synchonisation: only 4 supersteps

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Computational load imbalance

Define:

Ai : the subset of A distributed to processor i
|Ai |: the number of nonzeroes assigned to processor i

Number of multiplications during local multiplication step is:

O(max
i
|Ai |)

Allowed computational load imbalance ε:

max
i
|Ai | ≤ (1 + ε)

N

p

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Necessary communication

Note that communication during fanout and fanin is only necessary if:

Nonzeroes of a single column are distributed to different processors.

Nonzeroes of a single row are distributed to different processors.

A

~v

~u

Matrix Partitioning > Introduction > Parallel Sparse Matrix-Vector Multiplication

Parallel Sparse Matrix-Vector Multiplication

Necessary communication

Note that communication during fanout and fanin is only necessary if:

Nonzeroes of a single column are distributed to different processors.

Nonzeroes of a single row are distributed to different processors.

A

~v

~u

Matrix Partitioning > Introduction > Matrix Partitioning

Matrix Partitioning

Communication Volume

The communication cost of a single row or column i is given by:

C (i) = λi − 1

λi is the number of different processor indices in row/column i

The communication volume V of a matrix partitioning is given by:

V =
∑

rows,columns i

C (i)

Matrix Partitioning > Introduction > Matrix Partitioning

Matrix Partitioning

The matrix partitioning problem

Given:

(sparse) matrix A, m × n and N nonzeroes
number of processors p
allowed load imbalance ε

Find:

Partitioning of A into p subsets Ai , 0 ≤ i < p
maxi |Ai | ≤ (1 + ε)N

p

V is the minimum out of all possible partitionings

Problem is NP-Complete ⇒ no polynomial-time algorithm

Naive optimal algorithm is O(pN)

Matrix Partitioning > Introduction > Matrix Partitioning

Matrix Partitioning

Earlier research

Mainly heuristic solutions: try to find ’good’ solutions in polynomial time:

Mondriaan, PaToH, hMetis

Based on modelling the problem as a hypergraph partitioning problem

Use recursive bisection instead of partitioning into p parts directly

Multilevel scheme to enable solving large instances

Partitioning based on Kernighan–Lin graph partitioning (1972), in
Fiduccia–Matheyses version with vertex moves instead of swaps.

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

A new model for optimal partitioning

Naive algorithm

For each nonzero, try every processor index ∈ [0, p)

Return the partitioning with the lowest volume that obeys the load
imbalance constraint

=⇒ O(pN)

Restrictions

To reduce computation time for optimal solution:

Only consider p = 2, i.e. bipartitioning

Use strict load imbalance constraint:

m1 = N −m0 =

⌊
(1 + ε)

N

p

⌋
where processor i has mi nonzeroes (i = 0, 1) out of N

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

A new model

The new model

Define variables:

vc(i) for each column i
vr (i) for each row i

If:

vc(i) = 0: all nonzeroes in column i are assigned to processor 0
vc(i) = 1: all nonzeroes in column i are assigned to processor 1
vc(i) = 2: column i is cut

Volume V is the number of rows and columns with a value of 2

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

A new model

Number of solutions

Each row and column can have 3 different values ⇒ 3m+n,
for m × n matrix A

Naive algorithm tries all solutions ⇒ O(3m+n)

O(2N) > O(3m+n): new model is better if

N > log2 3 · (m + n) ≈ 1.58 · (m + n)

Infeasible solutions

Many solutions are infeasible:

For a nonzero aij in column i and row j , if vc(i) = 0 and vr (j) = 1 or vice
versa, the solution is infeasible!

⇒ Large reduction of search space

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound

Method

Divide problem into increasingly smaller subproblems

Arrange subproblems in branching tree

Traverse tree (Depth-First Search)

If lower bound of subproblem ≥ global upper bound, prune subtree

A tree leaf is a feasible solution of the problem

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound

Advantage

Branch-and-bound methods can reduce the number of subproblems that need
to be checked by a large amount

Requirement

Good methods to provide lower bounds to subproblems and upper bounds to
the main problem

Heuristics can be used to provide upper bounds

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound matrix partitioning

Model

Start with all vc(i) and vr (i) variables unassigned

Alternately assign the next available unassigned vc(i) or vr (i) variable to
0, 1 or 2

Prune subtree if partial assignment is infeasible, or a lower bound ≥
upper bound

If all vc(i) and vr (i) variables are assigned, we have a feasible solution to
the matrix partitioning problem

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound matrix partitioning

-
-
-
-
-

1
2
3
4
5

vrr

- - - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound matrix partitioning

-
-
-
-
-

1
2
3
4
5

vrr

0 - - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound matrix partitioning

2
-
-
-
-

1
2
3
4
5

vrr

0 - - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound matrix partitioning

2
-
-
-
-

1
2
3
4
5

vrr

0 1 - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound matrix partitioning

2
0
-
-
-

1
2
3
4
5

vrr

0 1 - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Branch-and-Bound matrix partitioning

Lower bound for communication

Given:

A partial assignment of vc(i) and vr (i) variables

Find:

A lower bound to the communication volume of all feasible partitionings
that can be obtained by extending this partial assignment

Multiple bounds

We use three independent lower bounds, and the actual lower bound is the
sum:

LB = b1 + b2 + b3

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Lower bounds

The first lower bound: b1

Based on rows and columns that are defined to be cut:

The number of rows and columns with a value of 2 is equal to b1

Here: b1 = 1

2
0
-
-
-

1
2
3
4
5

vrr

0 1 - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Lower bounds

The second lower bound: b2

Based on rows and columns that are implicitly cut:

Assigned columns j1 and j2 both have a nonzero in unassigned row i

If vc(j1) = 0 and vc(j2) = 1 (or vice versa), row i has to be cut

Here: b2 = 2, because of rows 3 and 5

2
0
-
-
-

1
2
3
4
5

vrr

0 1 - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Lower bounds

The third lower bound: b3

Based on partially assigned rows and columns:

Some nonzeroes of column j are assigned to a certain processor

To prevent cutting column j , all remaining nonzeroes have to be assigned
to that processor

The strict load imbalance equation might not allow this

Here: column 4 must be cut, so b3 = 1

2
0
-
-
-

1
2
3
4
5

vrr

0 1 - - -
1 2 3 4 5

vc

c

5× 5, N = 16 , m0 = m1 = 8

Matrix Partitioning > Optimal bipartitioning > Branch-and-bound

Optimal results

Benchmark Results

Solved matrices from University of Florida sparse matrix collection (max
runtime 24 hours):

Most nonzeroes: bcsstk04, 132× 132, 3648 nonzeroes, Vopt = 48

Largest dimensions: bwm200, 200× 200, 796 nonzeroes, Vopt = 4

Largest optimal volume: bcsstk04, 132× 132, 3648 nonzeroes,
Vopt = 48

Largest fraction of rows and columns cut: cage9 and Stranke94, both
half of number of rows and columns cut

Matrix Partitioning > Heuristic solutions > A new heuristic model

Optimal solutions inspire heuristic solutions

Characteristics

Most optimal solutions are
2-dimensional

Most columns and rows are
completely assigned to a single
processor

If a row is completely assigned to
processor i , the columns
connected to this row are often
also completely assigned to i

Matrix Partitioning > Heuristic solutions > A new heuristic model

A partitioning model

Model

A model for matrix partitioning with general p, and normal load imbalance:

Define a variable vc(i) for each column and vr (i) for each row

vc(i) indicates to which processor column i is completely assigned
⇒ if vc(5) = 3, column 5 is assigned to processor 3

Conflict if row and column of nonzero aij are assigned to different
processors

Resolution ⇒ lowest processor index wins

Matrix Partitioning > Heuristic solutions > A new heuristic model

Model example

3

3

0

1

1

1

2

3

4

5
vrr

2 3 2 2 3

1 2 3 4 5
vc

c

5× 5, N = 16 , m0 = 4,m1 = 6,m2 = 3,m3 = 3, V = 9

: Processor 3

: Processor 2

: Processor 1

: Processor 0

Matrix Partitioning > Heuristic solutions > A new heuristic model

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

Matrix Partitioning > Heuristic solutions > A new heuristic model

Matrix lns3937 (Navier–Stokes, fluid flow)

Splitting the sparse matrix lns3937 into 5 parts.

lns_3937_hybrid_p5_SBD.avi
Media File (video/avi)

Matrix Partitioning > Heuristic solutions > A new heuristic model

A greedy heuristic

Flipping rows/columns

Define function flip(q, i , j) ⇒ change vq(i) variable to value j (q = r , c)

Flip cost is volume difference after and before the flip

Greedy algorithm

Partition m × n matrix A over p parts, with load imbalance constraint:

Start with vc(i) = vr (j) = p − 1

For k = 0 to p − 2:

Repeatedly flip the row or column from p − 1 to processor k with the
lowest flip cost
Stop if no flips that obey load imbalance are available

Return the partitioning obeying load imbalance with the lowest cost

Matrix Partitioning > Heuristic solutions > A new heuristic model

KLFM

Kernighan–Lin Fiduccia–Matheyses

A popular local search method for partitioning is KLFM. We use a variant:

Start with a feasible partitioning

While there exists a feasible flip:

Apply feasible flip(q, i , j) with lowest cost
Lock the flipped row/column to its new value

Return partitioning with the lowest total cost encountered during run

Multiple runs

We can use the output of a single KLFM run as input to another KLFM run!

Matrix Partitioning > Heuristic solutions > A new heuristic model

Mondriaan 2D matrix partitioning

p = 4, ε = 0.2, global non-permuted view

impcol_b_p4.avi
Media File (video/avi)

Matrix Partitioning > Heuristic solutions > A new heuristic model

Fine-grain 2D matrix partitioning

Each individual nonzero is a vertex in the hypergraph, Çatalyürek and
Aykanat, 2001.

impcol_b_p4_fine.avi
Media File (video/avi)

Matrix Partitioning > Heuristic solutions > A new heuristic model

A combined heuristic

Mondriaan localbest V = 67, hybrid V = 33 and combined heuristic V = 30

Matrix Partitioning > Heuristic solutions > A new heuristic model

Multilevel method for matrices

C
oa

rs
en

in
g

R
efi

ne
m

en
t

Partitioning

Matrix Partitioning > Heuristic solutions > A new heuristic model

Multilevel method

Merging rows and columns

Rows and columns are merged, similar to the 2D coarsening method of
Uçar, Çatalyürek, and Aykanat (2010).

If more rows than columns, then split horizontally.

Variables maintained

nrr (Ak , i): number of input matrix rows represented by row i of Ak

nrc(Ak , i): number of input matrix columns represented by column i of Ak

nz(Ak , i , j): number of input matrix nonzeroes represented by nonzero aij

of Ak

Matrix Partitioning > Heuristic solutions > A new heuristic model

Results new heuristic

Matrix N m n Mond New
gemat11 33185 4929 4929 1512 1122
lp dfl001 35632 6071 12230 6131 6643
memplus 126150 17758 17758 13576 6667
cage10 150645 11397 11397 18952 15794
onetone2 227628 36057 36057 6277 6948
lp cre b 260785 9648 77137 9386 13031
finan512 596992 74752 74752 9289 8850
lhr34 764014 35152 35152 6858 6645
tbdmatlab 430171 19859 5979 52595 53622
bcsstk32 2014701 44609 44609 18763 17506
bcsstk30 2043492 28924 28924 22224 19937
tbdlinux 2157675 112757 20167 143863 177936

Communication volume for Mondriaan 3.11 vs. new method

p = 64

Matrix Partitioning > Conclusions and outlook

Conclusions and outlook

Conclusions

Matrix partitioning is a different art than hypergraph partitioning.

It is 2D!

The new method was inspired by viewing optimal solutions, and by the
benefits of keeping the nonzeros of rows or columns together in
Mondriaan.

We call the new method overpainting, since we paint rows and columns,
and sometimes paint over old layers.

Matrix Partitioning > Conclusions and outlook

Outlook

Thank you!

Fast implementation is ready. It will be included in Mondriaan 4.0.

MSc thesis Daan Pelt (August 2010, also for ILP results) is available via:
http://igitur-archive.library.uu.nl/student-theses/2011-0404-
200428/UUindex.html

	Introduction
	Parallel Sparse Matrix-Vector Multiplication
	Matrix Partitioning

	Optimal bipartitioning
	Branch-and-bound

	Heuristic solutions
	A new heuristic model

	Conclusions and outlook

