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The IDR(s) – Induced Dimension Reduction – method [Sonneveld and van Gijzen, SISC 31, 1035-1062
(2008)], is a family of short-term recurrent Krylov subspace solvers for large sparse, not necessarily sym-
metric linear systems. For increasing s, the convergence behaviour shows an increasing similarity with full
GMRES [Saad and Schultz, SISC 7, 856-869 (1986)]. This similarity even can be observed in systems
arising from non-preconditioned discretizations of Helmholtz’ equation, so apparently the classical restric-
tions on the spectrum of the matrix, such as being located at one side of a straight line through the origin
of the complex plane, are not required for IDR(s). We’ll give an explanation of this behaviour.
IDR(s) uses s so-called shadow vectors p1,p2, . . . ,ps. In solving the N × N system Ax = b, the
method produces iterates xn, for which the residuals rn = b − Axn are forced to be in spaces Gj of
shrinking dimensions. If G0 is the complete space, then Gj = (I − ωjA)

(
Gj−1

⋂
N (PH)

)
, where P is

an N × s matrix of which the shadow vectors are the columns. The scalars ωj are defined on the basis of
a stabilization argument, as is done in BiCGSTAB. Normally s + 1 residuals in Gj−1 are needed before
vectors in Gj can be constructed.
As in other Krylov subspace solvers, the residuals rn = b − Axn can be written as Φn(A)r0; in the
case of IDR(s), we call Φn the n-th degree IDR polynomial. This polynomial is the product of two other
polynomials: Φn(A) = Ωj(A)Ψn−j(A), where Ωj(A) = (I − ωjA)Ωj−1(A), with Ω0(A) = I . As
a consequence of the algorithm, the degree j satisfies j = b n

s+1c. The other polynomials Ψn−j can be
identified with the residual polynomials of a two-sided (block-)Lanczos process, with s left side starting
vectors p1,p2, . . . ,ps. Each step of this virtual Lanczos process can be regarded as a Galerkin approxima-
tion in the Krylov subspace Kn(A, r0), in which the s test vectors are the first n vectors from the set
{p1,p2, . . . ,ps,A

Hp1,A
Hp2, . . . ,A

Hps, (A
H)2p1, . . .}

The relation between this Galerkin approximation and the optimal Galerkin method –least squares– de-
pends on the angle between Kn(A, r0) and the search space: smaller angles produce results closer to the
opmtimal process. Least squares in this context is equivalent with the n-th step of full GMRES.
The shadow vectors in IDR(s) are usually chosen randomly. Originally because the authors couldn’t find
anything better. The random choice now produces the explanation of the GMRES-like convergence of
IDR(s). The virtual Lanczos residuals r̃n can be regarded as stochastic vectors. Denote the GMRES
residuals by r̂n, let r̃n−r̂n = ‖r̂n‖zn, then if all test vectors are independent standard normally distributed
(meaning s ≥ n), zn has the same probability distribution as the solution of a n × n linear system with
random matrix and random righthand side. The derivation of this distribution will be sketched. It turns out
that ‖zn‖ = O(

√
n) may be expected, implying that the logarithmic convergence history curve is shifted

a little bit to the right, compared to GMRES. This is in agreement with the observations.
If s is smaller, then the test vectors contain some stochastic dependence. This ruins the theoretical analysis,
but apparently, the method can live very well if the test vectors are only almost stochastically independent.
Experts in probability theory may try to generalize the analysis to the practial case of moderate s.
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