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Abstract. IDR (Induced Dimension Reduction) is a family of efficient iterative
methods for the numerical solution of large non-symmetric systems Ax = b of lin-
ear equations. Examples of IDR methods are Bi-CGSTAB [8], BiCGstab(`) [3] and
BiCGStab2 [2] and the more recent methods, IDR(s) [10], [6] and IDRstab [4], [7];
Bi-CGSTAB is equivalent to the original IDR method [9]. These IDR methods rely
on short recurrences and all iteration steps are equally fast. Often the convergence
(in terms of the number of multiplications of vectors by the matrix A) of the recent
versions is comparable to the convergence of GMRES [5].

In this talk the IDR method is interpreted in the context of deflation methods. It
is shown that IDR can be seen as a Richardson iteration preconditioned by a variable
deflation-type preconditioner.

The main result of this talk is the IDR projection theorem, which relates the
spectrum of the deflated system in each IDR cycle to all previous cycles. The theorem
shows that this so-called active spectrum becomes increasingly more clustered. This
clustering property may serve as an intuitive explanation for the excellent convergence
properties of IDR. These remarkable spectral properties exist whilst using a deflation
subspace matrix of fixed rank.

This is joint work [1] with Tijmen Collignon and Martin van Gijzen†.
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