A shift strategy for superquadratic convergence of the dqds algorithm for computing singular values

Kensuke Aishima

Matrix singular values play an important role in many applications. In 1994, the dqds algorithm was proposed by Fernando and Parlett [1] to compute the singular values of bidiagonal matrices to high relative accuracy. The dqds algorithm is currently implemented in LAPACK as DLASQ routine [2] which has a complicated but sophisticated shift strategy evolved in order to achieve high efficiency. Recently, based on a global convergence theorem of the dqds algorithm by the authors [3], superquadratic convergence of the DLASQ routine has been established [4].

The objective of this talk is to present another simple shift strategy enjoying superquadratic convergence. Our shift strategy is designed primarily to achieve superquadratic convergence. A numerical result is also shown to illustrate the superquadratic convergence. In addition, a practical implementation is presented, of the dqds algorithm with our shift strategy, which is comparable to the DLASQ routine.

References

- K. V. Fernando and B. N. Parlett: Accurate singular values and differential qd algorithms, *Numerische Mathematik*, vol. 67 (1994), pp. 191–229.
- [2] B. N. Parlett and O. Marques: An implementation of the dqds algorithm (positive case), *Linear Algebra and Its Applications*, vol. 309 (2000), pp. 217– 259.
- [3] K. Aishima, T. Matsuo, K. Murota and M. Sugihara: On convergence of the dqds algorithm for singular value computation, *SIAM Journal on Matrix Analysis and Applications*, vol. 30 (2008), pp. 522–537.
- [4] K. Aishima, T. Matsuo, K. Murota and M. Sugihara: Superquadratic convergence of DLASQ for computing matrix singular values, *Journal of Computational Applied Mathematics*, vol. 234 (2010), 1179–1187.