

Model Order Reduction for Dynamical Systems

Ph.D. Course

Instructor:Professor Danny C. Sorensen, Rice University, Houston, Texas, USA.Place:Collegezaal D, Mekelweg 4 (EWI building), Delft University of Technology.Date:November 1-5, 2010.Time:9am - 11:30am.

Content: a subset of topics from the list below.

To help us plan, please register by sending an e-mail to Marielba Rojas (marielba.rojas@tudelft.nl).

There is no registration fee.

List of topics

I. Linear Systems Theory

- 1. A motivating example
- 2. Linear time invariant systems: exact solution
- 3. Laplace transform, the transfer function
- 4. Energy, controllability, observability
 - Input to state and state to output maps.
 - Energy: 0 to state (reachability) and Energy: state to 0
 - Controllability and Observability Definition (Plus Motivating Examples)
 - Distance to uncontrollability Robust systems
 - Controllability and Observability Gramians
- 5. Norms
 - The \mathcal{H}_2 norm
 - The \mathcal{H}_{∞} norm
 - The Bode diagram
- 6. Spectral theory, stability, transient behavior
 - Spectrum, numerical range, pseudospectra
 - Asymptotic stability of linear systems
 - Transient growth of asymptotically stable linear, linearized systems

- II. Moment Matching Algorithms
 - 1. Rational approximation and moment matching
 - Model reduction as a rational approximation problem
 - The idea of moment matching
 - Pade approximation optimality
 - 2. Lanczos and Arnoldi processes
 - Krylov spaces, Controllability and Observability
 - Arnoldi, Symmetric Lanczos, Non-symmetric Lanczos
 - 3. Matching moments for free
 - Fundamental Theorem of Krylov spaces
 - Moment Matching Arnoldi
 - Moment Matching NS-Lanczos
 - Cost and storage comparisons
 - Approximation properties
 - 4. Rational Krylov process
 - Skelton's general interpolation result
 - Rational Krylov
 - Approximation properties
 - 5. Moment matching with finite poles
 - 6. Error bounds, stability considerations
 - The interpolation problem
 - A-posteriori bounds
 - Optimal interpolation \mathcal{H}_2 bounds
- III. Balanced Truncation Model Reduction
 - 1. Gramian based model reduction and the SVD
 - Traditional Gramian : $\int \mathbf{x} \mathbf{x}^T dt$
 - SVD truncation
 - Caveats on actual savings.
 - Specialized to LTI systems
 - 2. Hankel singular values, balanced coordinates
 - The Hankel operator and Hankel Singular Values
 - Incorporating observations
 - 3. Balanced truncation reduction
 - Moore's idea
 - The Lyapunov equation
 - The balancing transformation
 - Irrelevance of the state space coordinate system

- 4. Error bound, stability preservation
 - Lyapunov inertia theorem
 - Every truncation is controllable, observable, and asymptotically stable
- IV. Numerical Solution of Lyapunov Equations
 - 1. Existence, uniqueness, solution formulas
 - Spectrum of Lyapunov operator
 - Kronecker product linear system
 - Integral formulations of the solution
 - 2. Direct solution methods
 - Bartels–Stewart, Hammarling, Sorensen–Zhou
 - 3. Smith and ADI algorithms
 - Smith's method, Stein equation
 - Lyapunov/ADI connection
 - ADI iteration
 - Selection of ADI interpolation points
 - 4. Decay of singular values of solutions
 - Smith/ADI gives singular value estimates
 - Rational approximation, condenser capacity, asymptotically-optimal shifts
 - Hermitian case, elliptic function bounds (briefly)
 - 5. Low-rank Lyapunov solvers
 - Methods for truncating, updating SVDs (Baker)
 - Low-rank modified Smith method
- V. Nonlinear Model Reduction
 - 1. Proper Orthogonal Decomposition (POD)
 - Comparison to FEM
 - Examples and properties
 - 2. Discrete Emperical Interpolation(DEIM)
 - Development of DEIM
 - Implementation Issues
 - Error Properties
 - Computational Examples