
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 10-10

EFFICIENT NUMERICAL METHODS FOR LEAST-NORM REGULARIZATION

DANNY C. SORENSEN AND MARIELBA ROJAS

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2010

Copyright c© 2010 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission from
Department of Applied Mathematical Analysis, Delft University of Technology, The Netherlands.

Efficient Numerical Methods for Least-Norm Regularization

D.C. SORENSEN∗ M. ROJAS†

March 18, 2010

Abstract

The problem
min
x
‖x‖, s.t. ‖b−Ax‖ ≤ ε

arises in the regularization of discrete forms of ill-posed problems when an estimate of the noise level in the
data is available. After deriving necessary and sufficient optimality conditions for this problem, we propose two
different classes of algorithms: a factorization-based algorithm for small to medium problems, and matrix-free
iterations for the large-scale case. Numerical results illustrating the performance of the methods demonstrate
that both classes of algorithms are efficient, robust, and accurate. An interesting feature of our formulation is that
there is no situation corresponding to the so-called hard case that occurs in the standard trust-region subproblem.
Neither small singular values nor vanishing coefficients present any difficulty to solving the relevant secular
equations.

1 Introduction

Consider the problem

min
x
‖x‖, s.t. ‖b−Ax‖ ≤ ε, (1.1)

where b ∈ Rm, A ∈ Rm×n, and x ∈ Rn. Note that the matrix A is any rectangular matrix, ie. both m ≤ n and
m ≥ n are allowed. The Euclidean norm is used throughout the paper. Assume that the matrix A comes from
the discretization of an operator in an ill-posed problem, that the vector b contains data contaminated by noise,
and that ε ≥ 0 is an estimate of the noise level in the data. Then, solving Problem (1.1) yields an approximate
(regularized) solution for the noise-free problem [6]. In this regularization approach, the parameter ε is used to
control the effect of the noise. Note that the objective function in (1.1) could also take the form ‖Cx‖. When C is
nonsingular or full-rank, it is possible to convert the problem to the form (1.1). Here, we shall assume C = I.

We shall assume that all of the error is measurement error residing in the right-hand side b. Thus, the underly-
ing problem is

min
x
‖b−Ax‖

where we assume that b is a perturbation of exact data, i.e. that

b = bo + n with Axo = bo, (1.2)

ε ≥ ‖n‖. (1.3)

∗Department of Computational and Applied Mathematics, MS 134, Rice University, Houston, Texas 77251-1892 (sorensen@rice.edu).
The work of this author was supported in part by NSF grants CCR-9988393 and ACI-0082645, and by AFOSR grant FA9550-09-1-0225.

†Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
(marielba.rojas@tudelft.nl).

1

Thus, b is a perturbation of a vector bo ∈ Range(A) and ε is an overestimate of the perturbation error. Among
other things, these assumptions assure that the true solution xo is a feasible point for Problem (1.1). Additional
consequences of these assumptions will emerge during the derivation of algorithms.

Problem (1.1) is a special case of quadratically-constrained quadratic problems studied in [2, 4]. Morozov
developed a Newton iteration for small to medium dense problems in [13] and an SVD-based implementation of
that method is available from [7, routine discrep]. One of the methods presented here for small dense problems is
essentially the same as this one with the exception of some implementation and initialization details.

Solution methods that are suitable for large-scale instances of (1.1) have been proposed in [10, 19]. Both
methods use Krylov subspace techniques to solve linear systems derived from the optimality conditions.

In this work, we present two classes of methods: a factorization-based Newton iteration for solving the relevant
secular equation for small to medium problems, and two matrix-free nonlinear-Lanczos-based methods for solving
relevant perturbed nonlinear eigenvalue problems in the large-scale case. Both classes of algorithms are efficient,
robust, and accurate. Moreover, neither the presence of small singular values in the coefficient matrix nor vanishing
coefficients in the secular equations pose any computational challenge for the methods.

The organization of the paper is as follows. In Section 2, we derive necessary and sufficient optimality condi-
tions for a solution of Problem (1.1). In Section 3, we derive a method for small to medium problems. Section 4
contains suitable reformulations of the optimality conditions for the large-scale case. In Sections 5 and 6, we
present matrix-free residual-space and solution-space iterations, respectively, for solving large-scale instances of
Problem (1.1). Section 7 contains an analysis of the matrix-free methods. In Section 8, we present numerical
results to illustrate the performance of the methods on test problems including large-scale image deblurring. Con-
cluding remarks are presented in Section 9.

2 Necessary and Sufficient Conditions for Minimization

In this section, Lagrange multiplier theory is used to derive necessary (KKT) conditions for Problem (1.1). These
results are a special case of the more general derivation of Gander [4]. We use essentially the same device here
to derive necessary conditions for this special case. Due to the convexity of the problem, these conditions are
also sufficient for optimality (cf. [1, 3]) and this may be used to great advantage in the large-scale setting to be
discussed later. Moreover, since the objective function is strictly convex, Problem (1.1) has a unique solution.

Consider the Lagrangian for Problem (1.1):

L := ‖x‖2 + λ(‖b−Ax‖2 − ε2).

The KKT conditions for Problem (1.1) which derive from this Lagrangian are:

x + λAT (Ax− b) = 0, λ(‖b−Ax‖2 − ε2) = 0, λ ≥ 0.

Now, observe that:

• ‖b‖ ≤ ε⇔ x = 0 is a solution,

• λ = 0⇒ x = 0,

• λ > 0⇔ x 6= 0 and ‖b−Ax‖2 = ε2.

Thus, the KKT conditions for Problem (1.1) may be restated with a positive λ as follows :

x + λAT (Ax− b) = 0, ‖b−Ax‖2 = ε2, λ > 0. (2.1)

We now show that the KKT necessary conditions (2.1) are also sufficient.

2

Lemma 2.1 If the pair (x, λ) satisfies the KKT conditions (2.1) then x is the unique solution to Problem (1.1).

Proof: Put r = b−Ax in the KKT conditions (2.1) to get

x = λATr with ‖r‖ = ε, λ > 0.

Suppose x̂ is any vector satisfying ‖x̂‖ ≤ ‖x‖ with ‖b−Ax̂‖ ≤ ε = ‖r‖. Put x̂ = x + p and note that

‖x‖2 ≥ ‖x̂‖2 = ‖x‖2 + 2pTx + ‖p‖2.

Thus, 2pTx ≤ −‖p‖2 which gives
2λ(Ap)Tr ≤ −‖p‖2.

Note also that b−Ax̂ = r−Ap satisfies ‖r−Ap‖2 = ‖b−Ax̂‖2 ≤ ε2 = ‖r‖2 implying

‖r‖2 − 2(Ap)Tr + ‖Ap‖2 ≤ ‖r‖2.
Hence,

0 ≤ λ‖Ap‖2 ≤ 2λ(Ap)Tr ≤ −‖p‖2 ≤ 0,

which in turn implies that p = 0.
This argument shows that ‖x‖ ≤ ‖x̂‖ for any vector x̂ such that ‖b −Ax̂‖ ≤ ε. Hence, this x solves

Problem (1.1). Moreover, this solution must be unique. �
In order to derive practical algorithms for solving Problem (1.1) based on conditions (2.1), suitable manipula-

tions are needed. In the rest of this section, we present two versions of the optimality conditions based, respectively,
on the Singular Value Decomposition (SVD) and on the QR decomposition of the matrix A.

2.1 Optimality Conditions: SVD version

Let p = min{m,n} and let A = USVT with UTU = VTV = Ip and S = diag(σ1, σ2, . . . , σp) be the
(short-form) SVD of A. Let b = Ub1 + b2 with UTb2 = 0. Then

‖b−Ax‖2 = ‖U(b1 − SVTx)‖2 + ‖b2‖2

and thus

‖b−Ax‖2 ≤ ε2 ⇐⇒ ‖b1 − SVTx‖2 ≤ ε2 − ‖b2‖2 =: δ2, (2.2)

where we have assumed that ε2 ≥ ‖b2‖2, since ‖b2‖ > ε would imply that there is no feasible point. Therefore,
we must assume b = Ub1 + b2 with ‖b2‖ ≤ ε.

Using (2.2), the KKT conditions (2.1) become:

x + λVS(SVTx− b1) = 0, ‖b1 − SVTx‖2 = δ2, λ > 0. (2.3)

We now manipulate these equations into a more useful form. Note that multiplying the first equation in (2.3) on
the left by SVT and subtracting b1 from both sides gives:

SVTx− b1 + λS2(SVTx− b1) = −b1.

Hence, the KKT conditions become:

(I + λS2)(b1 − SVTx) = b1, ‖b1 − SVTx‖2 ≤ δ2, λ > 0. (2.4)

As a final transformation, we define z := b1 − SVTx to put this problem in the form:

(I + λS2)z = b1, ‖z‖2 ≤ δ2, λ > 0. (2.5)

Now, recalling that x + λVS(SVTx− b1) = 0, we have:

x = λVSz.

3

2.2 Optimality Conditions: QR version

Following a similar approach to the one in Section 2.1, let A = QR with QTQ = I be the (short-form) QR
factorization, and let b = Qb1 + b2, with QTb2 = 0. Hence, conditions (2.1) become:

(I + λRRT)z = b1, ‖z‖2 = δ2, λ > 0, (2.6)

where z = b1 −Rx, δ2 = ε2 − ‖b2‖2, and the solution vector satisfies x = λRTz.
Note that to ensure feasibility, we must again assume ‖b2‖ ≤ ε.

3 A Newton Iteration for Dense Problems

In this section, we derive an algorithm suitable for dense problems. That is, we assume the problem size is such
that a direct computation of the short-form SVD of A is affordable. The derivation of the previous section indicates
that we must perform the following steps:

• Compute A = USVT ;

• Put b1 = UTb;

• Set δ2 = ε2 − ‖b−Ub1‖2;

• Compute λ ≥ 0 and z s.t. (I + λS2)z = b1, ‖z‖2 ≤ δ2;

• Put x = λVSz.

The choice of algorithm for computing λ is guided by previous algorithms developed for various secular
equations, for example [5, 8, 11, 12, 17]. The simplest choice is to apply a safeguarded Newton’s method to find a
positive zero of the function

ψ(λ) :=
1
‖zλ‖

− 1
δ
,

where
zλ := (I + λS2)−1b1.

In the following discussion, we shall see that ψ is monotone increasing and concave on [0,∞). Hence, whenever
‖b2‖ < ε, there is a unique λ > 0 such that ‖zλ‖ = δ. To this end, suppose that rank(A) = r so that the singular
values of A are σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0. Denote the jth component of b1 by βj for
1 ≤ j ≤ n, and consider the rational function

φ(λ) := z
T

λzλ =
r∑

j=1

β2
j

(1 + λσ2
j)2

+ β2
o ,

where β2
o :=

∑n
j=r+1 β

2
j . With this formulation, the key rational function φ only has poles at the points − 1

σ2
j

for

1 ≤ j ≤ r. Therefore, the function φ(λ) is always well defined on the interval [0,∞) and there is no difficulty
associated with small singular values or vanishing coefficients βj . Note also that the assumption ‖b2‖2 ≤ ε2

implies ‖b1‖ > δ. It follows that φ(0) = ‖b1‖2 > δ2. Moreover, limλ→∞ φ(λ) = β2
o < δ2. We now observe that

φ′(λ) = −2
r∑

j=1

σ2
jβ

2
j

(1 + λσ2
j)3

= −2b1
TS(I + λS2)−3Sb1 < 0,

for all λ ∈ (0,∞). Thus φ is strictly monotone decreasing on (0,∞) and there must be a unique solution λ =
λo ∈ (0,∞) to the equation φ(λ) = δ2. Finally, it is straightforward to see that φ′′(λ) > 0 for all λ ∈ (0,∞).

Since φ(λ) is positive, strictly monotone decreasing, and strictly convex on (0,∞), it follows that ψ′(λ) > 0
and ψ′′(λ) < 0 for all λ ∈ (0,∞). Therefore, we have:

4

1. ψ(λ) is concave and monotone increasing for λ ∈ (0,∞),

2. ψ(λ) = 0 has a unique root at λ = λo > 0.

Given these properties, it is well known that Newton’s method applied to finding a root of ψ will converge
monotonically and quadratically to λo from any starting point in the interval [0, λo] without safeguarding. Never-
theless, some safeguarding mechanism should be included. An initial guess in the interval [0, λo) is available due
to the following analysis. It is easily seen that:

‖b1‖2

(1 + λoσ2
1)2
≤ φ(λo) = δ2.

Hence, an initial guess λ1 ∈ [0, λo) can be constructed as:

λ1 :=
‖b1‖ − δ
δσ2

1

< λo. (3.1)

The Newton iteration for finding a root of ψ (solving the secular equation ψ(λ) = 0) is presented in Figure 1
as function LNR SecEqnSol. The complete algorithm for Least-Norm Regularization is presented in Figure 2 as
function LNR.

function [z,λ] = LNR SecEqnSol(S, b1, δ, τ)

Put D = S2; ψ = 1;

λ = ‖b1‖−δ
δσ2

1
;

while (|ψ| > τ),
z = (I + λD)−1b1;
w = Sz :
φ = ‖z‖;
dφ = z′∗z

wT (I+D)−1w

ψ = 1− φ/δ ;
λ← λ− ψ ∗ dφ;

end

Figure 1: Algorithm LNR SecEqnSol: Newton’s method on the secular equation ψ(λ) = 0.

As mentioned during the introduction, Morozov proposed the same basic Newton iteration in [13] and an
SVD-based implementation of that method is available from [7, routine discrep]. However, we have introduced
some important performance and robustness additions. We have introduced an initial guess, Equation (3.1), which
can significantly reduce the number of Newton steps required to solve the secular equation. We also provide the
observation that ε must be replaced by δ, where δ2 = ε2−‖b−Ub1‖2 and discuss the implications on feasibility
when this difference is negative. Our implementation incorporates ideas pioneered in Hebden [8] although our
test examples did not reveal any significant performance differences between the implementation from [7, routine
discrep] and our method.

5

function [x,λ] = LNR(A, b, ε, τ)

if ‖b‖ ≤ ε
x = 0; λ = 0;

else
Compute A = USVT (SVD);
Put b1 = UTb;
Put b2 = b−Ub1;
if ‖b2‖ > ε

Problem is infeasible
else

Set δ =
√
ε2 − ‖b2‖2;

[z, λ] = LNR SecEqnSol(S,b1, δ, τ);
Put x = λVSz;

end
end

Figure 2: Algorithm LNR for Least-Norm Regularization.

6

4 The Large-Scale Setting

In the large-scale case, some suitable modifications to the conditions derived in Section 3 are required. We return
to the KKT conditions (2.1). Multiplying the first equation of (2.1) through by A and adding −b to both sides
gives:

Ax− b + λAAT (Ax− b) = −b.

Put r = b−Ax to obtain the equation:

(I + λAAT)r = b (4.1)

and set xλ = λATr. Note that the equation for r should be reasonably well conditioned for positive λ.
The zero-finding algorithm must be cast in terms of adjusting λ so that:

‖rλ‖ = ε. (4.2)

A variety of possibilities exist for iteratively solving Equation (4.2) and a very promising one is derived in
the following section. However, this form may be inconvenient for an m × n matrix A with m >> n because it
generally involves vectors of length m rather than n. Working with the KKT conditions (2.1) directly will address
the case m >> n.

The first equation in (2.1) can be written as:

(I + λATA)x = λATb. (4.3)

Given an n× k orthogonal matrix V, let QR = AV be the short-form QR-factorization with QTQ = Ik and
R upper triangular. To obtain a projected problem, put x = Vx̂ and obtain the projected equation:

(I + λ(AV)T (AV))x̂ = λ(AV)Tb

by multiplying through with VT from the left. Substituting QR in place of AV gives:

(I + λRTR)x̂ = λRTQTb.

Assuming RT is nonsingular gives:

(I + λRRT)R−T x̂ = λb̂ with b̂ ≡ QTb.

Thus x̂ = λRT (I + λRRT)−1b̂ and

b−Ax = b− (AV)x̂ = b− λQ(RRT)(I + λRRT)−1b̂.

Put f = b−Qb̂ , substitute and manipulate to obtain:

b−Ax = f + Q[I− λ(RRT)(I + λRRT)−1]b̂ = f + Q(I + λRRT)−1b̂.

Now, observe that
‖b−Ax‖2 = ‖f‖2 + ‖(I + λRRT)−1b̂‖2

since Q is an orthogonal matrix and QT f = 0. Thus, ‖b−Ax‖ = ε is satisfied when

‖(I + λRRT)−1b̂‖2 = ε2 − ‖f‖2. (4.4)

If m is not huge, it may be worthwhile to actually use the QR-factorization of AV. Column updating can be
utilized to update this factorization as V expands column by column. When m is huge, one might get R from a

7

Cholesky factorization of (AV)T (AV) but this will require the storage (or re-computation at each step) of AV as
V expands.

Obtaining Equation (4.4) for the residual will enable the derivation of an algorithm using Algorithm LNR SecEqnSol
shown in Figure 1 to solve the secular equation as before. This can be done either using an SVD of R or deriving
a version of LNR that will use R instead. Details will be given when we derive the corresponding algorithm.

Matrix-free algorithms must be constructed when A is either not explicitly available or too large to make the
computation of an SVD affordable. Large-scale instances of the related, standard trust-region subproblem

min ‖b−Ax‖ s.t. ‖x‖ ≤ ∆,

can be solved with the iterative algorithm LSTRS [15, 16, 17]. Recently [9], the performance of the LSTRS
algorithm was greatly improved by incorporating the nonlinear Lanczos iteration proposed by Voss [20].

The Voss nonlinear Lanczos approach worked so well in the standard setting that it seemed natural to apply a
variant of it for solving the constrained least-norm problem (1.1). However, to obtain a suitable formulation for
the least norm regularization problem, the parametric eigenvalue problem at the heart of LSTRS must be replaced
by an appropriate nonlinear function, the secular equation.

We shall present two nonlinear Lanczos iterations for the least-norm regularization problem. One of these
will be in the residual r-space and the other will be in the solution or x-space. At each step of these iterations
an existing basis V is expanded. A linear Lanczos method would expand this space with a vector obtained by
the 3-term Lanczos recurrence and this would amount to a standard Krylov update. Our iteration is nonlinear
because it obtains the new expansion direction v from a nonlinear process, the solution of the secular equation . In
Section 7, we show that the adjoined vector v is in the direction of a projected gradient (or a Newton-Like step if
a pre-conditioner is used) using a direction obtained from the solution of the secular equation. In many ways, this
is analogous to the expansion step in a Jacobi-Davidson iteration [18].

5 Nonlinear Lanczos r = b−Ax Iteration

As we mentioned above, in the large-scale setting, it may be intractable to work with the SVD as we did in
Section 3. It is quite natural however to work with Equation (4.1) to approximately solve Equation (4.2) with an
iterative projection approach. Thus, the parametric eigenvalue problem in LSTRS is replaced by the nonlinear
equation ‖(I + λAAT)−1b)‖ = ε.

An orthogonal matrix V ∈ Rm×k is used to construct a projection of Equation (4.1) as follows:

• Put r = Vr̂ and express b = Vb̂ + f with VT f = 0 .

• Then the projected problem based upon Equation (4.1) becomes:

VT (I + λAAT)Vr̂ = b̂. (5.1)

• If WSUT = VTA is the (short-form) SVD, then the projected form of Equation (4.2) becomes:

‖(I + λS2)−1b1‖ = ε with b1 = WT b̂. (5.2)

• The secular equation (5.2) is solved to obtain λ using Algorithm LNR SecEqnSol in Figure 1 with δ = ε .

• We then put xλ = λATVr̂ = λATV(Wz) = USzλ, where z = (I + λS2)−1b1.

• Nonlinear Lanczos Step: Now, compute r = b−Axλ and obtain a new search direction v = (I−VVT)r
and set v← v/‖v‖ . This vector is adjoined to V to update the basis V← [V,v] and then the process is
repeated until convergence.

8

This iteration must terminate at the nonlinear Lanczos step if (I−VVT)r = v = 0. However, this would be
a fortunate event since it would imply that the problem has been solved. That is,

(I−VVT)r = 0 ⇒ (I + λAAT)r = b and ‖r‖ = ε.

In other words, this r satisfies the KKT conditions (2.1). To see this, note that in such a case r = Vs must hold
for some s. Thus,

Vs = b−Axλ = b− λAATVr̂.

Hence,
s = b̂− λVTAATVr̂ = (I + λVTAATV)r̂− λVTAATVr̂ = r̂

This gives
r = Vr̂ = b− λAATVr̂,

and thus
(I + λAAT)r = b.

Since equation (5.2) implies r = Vr̂ and ‖r‖ = ‖r̂‖ = ε this r = b −Axλ satisfies the KKT conditions. An
additional consequence is that this nonlinear Lanczos iteration is finitely terminating since VVT = I whenever
k = p = min{m,n}.

This discussion leads to the nonlinear Lanczos iteration in Figure 3 for satisfying Equations (4.1) and (4.2).

6 Nonlinear Lanczos x Iteration

Virtually the same procedure as that of the previous section can be used to derive a nonlinear Lanczos iteration in
the solution space. In this case we shall work with Equation (4.3) to approximately solve Equation (4.4) with an
iterative projection approach.

Now, an n× k orthogonal matrix V shall be used to construct a projection of Equation (4.3) as follows:

• Put x = Vx̂ and compute QR = AV, the short form QR-factorization. Express b = Qb̂ + f with
QT f = 0 . Set δ =

√
ε2 − fT f . If δ is not real, V must be expanded (via standard Lanczos steps applied

to Kk(ATA,ATb)) until it becomes real.

• The projection procedure described in Section 4 is followed to arrive at the problem of solving

‖(I + λRRT)−1b̂‖2 = δ2,

which replaces LSTRS’s parametric eigenvalue problem in this approach.

• If WSUT = R is the (short form) SVD, then the projected form of Equation (4.4) becomes

‖(I + λS2)−1b1‖ = δ with b1 = WT b̂. (6.1)

• The secular equation (6.1) is solved to obtain λ using Algorithm LNR SecEqnSol in Figure 1 with δ as
specified above.

• We then put xλ = λV(USz) where z = (I + λS2)−1b1.

• Nonlinear Lanczos Step: Now, compute r = b − Axλ and obtain a new search direction
v = (I − VVT)(λATr). The normalized vector v ← v/‖v‖ is adjoined to V to update the basis
V← [V,v] and then the process is repeated until convergence.

9

function [x, r, λ] = LNR NLLr(A,b, ε, τ)

Input: A an m by n matrix
b a vector of length m
ε a positive scalar with ε ≥ ‖b− bo‖
τ tolerance on norm constraint relative accuracy

Output: x solution vector of length n
r the linear system residual b−Ax
λ a parameter such that (I + λAAT)r = b

This solves min ‖x‖ s.t. ‖b−Ax‖ = ε

Compute an initial basis V for Kk(AAT ,b) via Lanczos
(with Ve1 = b/‖b‖)

Set r = b; x = 0; λ = 0;

while (| ‖r‖ − ε | > ε · τ),
Compute VTA = WSUT (SVD);
Set b1 = WT (VTb);
[z, λ] = LNR SecEqnSol(S,b1, ε, τ);
x = U(Szλ);
r = b−Ax;
v← r−V(VTr); v← v/‖v‖;
V← [V,v];

end

Figure 3: Algorithm LNR NLLr: Nonlinear Lanczos Residual-Space Iteration for LNR.

10

This iteration must terminate at the nonlinear Lanczos step if (I − VVT)(λATr) = v = 0. However, this
would again be a fortunate event since it would imply that the problem has been solved. In other words,

(I−VVT)(λATr) = 0 ⇒ x + λAT (Ax− b) = 0, ‖b−Ax‖ = ε, λ > 0.

To see this, note v = 0 implies λATr = Vs, and therefore:

Vs = λAT (b−Ax) = λATb− λATAV[I + λ(AV)T (AV)]−1λ(AV)Tb.

Thus,

s = λ(AV)Tb− λ(AV)T (AV)[I + λ(AV)T (AV)]−1λ(AV)Tb

= [I− λ(AV)T (AV)[I + λ(AV)T (AV)]−1]λ(AV)Tb

= [I + λ(AV)T (AV)]−1λ(AV)Tb

= x̂.

Hence, λATr = Vs = Vx̂ = x and it follows that

0 = x− λATr = x + λAT (Ax− b),

with ‖b−Ax‖ = ‖r‖ = ε, and λ > 0.
Thus, the KKT conditions (2.1) are satisfied and x is the unique solution to Problem (1.1). Again, an additional

consequence is that this nonlinear Lanczos iteration is finitely terminating since VVT = I whenever k = p =
min{m,n}.

This discussion leads to the nonlinear Lanczos iteration in Figure 4 for satisfying Equations (4.3) and (4.4).

7 Analysis

7.1 The residual space iteration

We have demonstrated that the KKT conditions are equivalent to finding r, λ > 0 such that

(I + λAAT)r = b with ‖r‖ = ε.

The solution x = λATr is a by-product. For a given λ, the first equation amounts to solving the problem

min
r
{1
2
rT (I + λAAT)r− bTr} ≡ min

r
ϕ(r, λ),

since (I + λAAT)r− b = ∇rϕ(r, λ). At a point r = Vr̂, the steepest descent direction is given by

s = −[(I + λAAT)r− b] = (b−Ax− r).

This direction may be decomposed into orthogonal components

s = VVTs + (I−VVT)s = V[b̂− (I + λVTAATV)r̂] + (I−VVT)(b−Ax− r) = (I−VVT)(b−Ax),

since
(I + λVTAATV)r̂ = b̂ and (I−VVT)r = 0.

Hence, the step s used in Algorithm LNR NLLr is in fact the steepest descent direction for ϕ at r = Vr̂ and λ.
The vector v = s/‖s‖ is adjoined to the search space S = Range([V,v]) and this space contains all points of the
form rα = r + vα and hence contains the minimum of ϕ along the steepest descent direction.

11

function [x, r, λ] = LNR NLLx(A,b, ε, τ)

Input: A an m by n matrix
b a vector of length m
ε a positive scalar with ε ≥ ‖b− bo‖
τ tolerance on norm constraint relative accuracy

Output: x solution vector of length n
r the linear system residual b−Ax
λ a parameter such that (I + λAAT)r = b

This solves min ‖x‖ s.t. ‖b−Ax‖ = ε

Compute an initial basis V for Kk(ATA,ATb) via Lanczos
(with Ve1 = ATb/‖ATb‖), performing enough steps to
ensure that ε ≥ ‖f‖.
Set r = b; x = 0; λ = 0;

while (| ‖r‖ − ε | > ε · τ),
Compute AV = QR;
Compute R = WSUT (SVD);
Set h = QTb;
Set b1 = WTh;

Set f = b−Qh ; δ =
√
ε2 − fT f ;

[z, λ] = LNR SecEqnSol(S,b1, δ, τ);
x = λV(USz);
r = b−Ax;
v = λATr;
v← v −V(VTv); v← v/‖v‖;
V← [V,v];

end

Figure 4: Algorithm LNR NLLx: Nonlinear Lanczos Solution-Space Iteration for LNR.

12

The new r+, λ+ selected by Algorithm LNR NLLr from this space must give descent from the point r, λ since
r ∈ S. The new function value must satisfy ϕ(r+, λ+) < ϕ(r, λ), since

ϕ(r+, λ+) = minϕ(V+r̂+, λ+) < minϕ(Vr̂, λ) = ϕ(r, λ).

Thus the algorithm is globally convergent in an iterative sense (it also has finite convergence) and can only halt
with the exact solution (otherwise there is a nonzero step s).

More generally, at a point r = Vr̂, a descent direction is given by

s = −M[(I + λAAT)r− b] = M(b−Ax− r),

where M is any symmetric positive definite matrix and x = λAT r. Using the orthogonal decomposition given
above, we have

s = M(I−VVT)(b−Ax).

To get v, the direction s is orthogonalized against Range(V) and then normalized to have unit length. Thus v is
in the direction

v̂ = (I−VVT)M(I−VVT)(b−Ax).

This will give a pre-conditioned or Newton-like iteration. Again, when v is adjoined to the search space, the
next iterate will give a decrease in the objective function that is at least as good as the Newton-like step since that
step is contained in the search space.

Should v̂ = 0 occur, the iteration will halt with the solution as before since this would imply

0 = (b−Ax)T v̂ = (b−Ax)T (I−VVT)M(I−VVT)(b−Ax).

Thus 0 = (I−VVT)(b−Ax) which implies

b−Ax = Vz (7.1)

for some z. Hence,

z = VT (b−Ax) = b̂− λVTAATr = (I + λVTAATV)r̂− λVTAATVr̂ = r̂.

Substituting z = r̂ into Equation (7.1) gives b −Ax = r. Since ‖r‖ = ε by construction, this implies that the
KKT conditions will be satisfied indicating x = λATr is the solution.

7.2 The solution space iteration

The analysis is similar to the one just given for the residual space iteration. We have demonstrated that the KKT
conditions are equivalent to finding x, λ > 0 such that

(I + λATA)x = λATb with ‖r‖ = ε and r = b−Ax.

For a given λ, the first equation amounts to solving the problem

min
x
{1
2
xT (I + λATA)x− λ(ATb)Tx} ≡ min

x
ϕ(x, λ),

since (I + λATA)x− λATb = ∇xϕ(x, λ). At a point x = Vx̂, the steepest descent direction is given by

s = −[(I + λATA)x− λATb] = (λATr− x).

13

This direction may be decomposed into orthogonal components

s = VVTs+(I−VVT)s = V[λ(AV)Tb− [I+λ(AV)T (AV)]x̂]+ (I−VVT)(λATr) = (I−VVT)(λATr),

since
[I + λ(AV)T (AV)]x̂ = λ(AV)Tb.

Hence, as before, we have that the step s used in Algorithm LNR NLLx is in fact the steepest descent direction
for ϕ at x = Vx̂ and λ. The vector v = s/‖s‖ is adjoined to the search space S = Range([V,v]) and this space
contains all points of the form xα = x + xα and hence contains the minimum of ϕ along the steepest descent
direction.

The new x+, λ+ selected by Algorithm LNR NLLx from this space must give descent from the point x, λ
since x ∈ S. The new function value must satisfy ϕ(x+, λ+) < ϕ(x, λ), since

ϕ(x+, λ+) = minϕ(V+x̂+, λ+) < minϕ(Vx̂, λ) = ϕ(x, λ).

Thus the algorithm is globally convergent in an iterative sense (it also has finite convergence) and can only halt
with the exact solution (otherwise there is a nonzero step s).

More generally, at a point x = Vx̂, a descent direction is given by

s = −M[(I + λATA)x− λATb] = M(λATr− x),

where M is any symmetric positive definite matrix. Using the orthogonal decomposition given above, we have

s = M(I−VVT)(λATr).

To get v, the direction s is orthogonalized against Range(V) and then normalized to have unit length. Thus v is
in the direction

v̂ = (I−VVT)M(I−VVT)(λATr).

Again, this provides a pre-conditioned or Newton-Like step.
Should v̂ = 0 occur, the iteration will halt with the solution as before since this would imply

0 = λ(ATr)T v̂ = λ(ATr)T (I−VVT)M(I−VVT)(λATr).

Thus 0 = (I−VVT)(λATr) which implies
λATr = Vz

for some z. Hence,

z = VT (λATr) = λVTAT (b−Ax) = λ(AV)Tb− λ(AV)T (AV)x̂ = x̂.

Therefore, λATr = x, and since ‖r‖ = ε by construction, this implies that the KKT conditions will be satisfied
by λ and x = λATr.

8 Numerical Results

In this section, we present numerical results to illustrate the performance of the proposed methods on regularization
problems. The experiments were carried out in MATLAB R2008b on a MacBookPro with a 2.66 GHz processor
and 4 GB of RAM, running the Mac OS X version 10.6.2 (Snow Leopard) operating system. The floating-point
arithmetic was IEEE standard double precision with machine precision 2−52 ≈ 2.2204×10−16. We used problems
from a standard test set [7]. In Sections 8.1 through 8.3, the data vector b was constructed as b = bo + n, with
bo the noise-free data vector (available from the test set), and n a fixed noise vector with normally-distributed
components and such that ||n||/||b|| = 10−5. In Section 8.4, ||n||/||b|| = 10−2 and 10−3 were used. The exact
solution to the inverse problem was available for all problems and is denoted here by x∗.

14

8.1 LNR: the Newton iteration

In this section, we report results for the Newton iteration, LNR. We performed two sets of experiments on m× n
matrices with m = n = 300 and m = n = 1024. The stopping criteria for Algorithm LNR SecEqnSol (Figure 1)
was |ψ| ≤ 1.5 × 10−8 (square root of machine precision) and a maximum of 20 iterations. In Tables 1 and 2, we
report the number of iterations (Iter), the average time in seconds for ten runs (Time), and the relative error in the
regularized solution x with respect to x∗. For all but one problem (i laplace, ex. 1), we obtained very accurate
regularized solutions with respect to x∗ both in the 2-norm and visually. For problem i laplace, ex. 1, the LNR
solutions and the best truncated-SVD solutions have similar accuracy.

Problem Iter Time ||x−x∗||
||x∗||

baart 12 0.18 5.39e-02
deriv2, ex. 1 8 0.18 7.51e-02
deriv2, ex. 2 8 0.18 7.24e-02
foxgood 10 0.16 2.26e-03
i laplace, ex. 1 11 0.11 1.30e-01
i laplace, ex. 3 10 0.11 1.93e-03
heat, mild 3 0.19 1.43e-04
heat, severe 8 0.20 8.72e-03
phillips 8 0.16 1.19e-03
shaw 10 0.16 3.18e-02

Table 1: LNR on Regularization Tools problems,
m = n = 300.

Problem Iter Time ||x−x∗||
||x∗||

baart 12 57.04 5.33e-02
deriv2, ex. 1 9 57.18 6.90e-02
deriv2, ex. 2 9 57.93 6.59e-02
foxgood 11 59.91 1.96e-03
i laplace, ex. 1 12 23.04 1.67e-01
i laplace, ex. 3 11 22.88 1.96e-03
heat, mild 4 60.96 1.13e-03
heat, severe 9 40.27 6.95e-03
phillips 9 46.97 1.32e-03
shaw 11 57.25 3.14e-02

Table 2: LNR on Regularization Tools problems,
m = n = 1024.

8.2 LNR NLLr and LNR NLLx: the matrix-free iterations

In this section, we report results for the residual-space and solution-space, matrix-free iterations LNR NLLr (Fig-
ure 3) and LNR NLLx (Figure 4), respectively. We performed two sets of experiments using the same data as
in Section 8.1 in order to compare the computed solutions with those obtained with the Newton iteration. The
stopping criterion was | ||Ax− b|| − ε |/ε ≤ τ . The value of τ was chosen such that the relative error in x with
respect to x∗ was of the same order as for the LNR solution. In this case, τ = 10−1 was sufficient to achieve
that goal for all but one method on one problem. For LNR NLLx on problem heat, severe, τ = 10−2 was used.
The value of ε = ‖b − bo‖ was used for all problems except for problem heat, mild, for which ε = 2‖b − bo‖
was used. This is a good example of how the upper bound on the noise level can be advantageously used in the
least-norm regularization approach. The number of vectors in the initial basis for the Krylov subspace was 11 for
LNR NLLr, and 21 for LNR NLLx.

The results for LNR NLLr and LNR NLLx for m = n = 300 are reported in Tables 3 and 4, respectively.
For m = n = 1024, the results are reported in Tables 5 and 6. In these tables and throughout the discussion, x
shall denote the solution computed by the matrix free method LNR NLL (r or x), xLNR shall denote the solution
computed by the dense Newton method LNR, and x∗ shall denote the true solution. We report the number of outer
iterations (OuIt), the average number of inner iterations, ie. iterations required by LNR on the projected problems
(InIt), the number of matrix-vector products (MVP), the average time in seconds for ten runs (Time), the number
of vectors (Vec), the relative error in the computed solution x with respect to xLNR, and the relative error in x with
respect to x∗.

The results show a reasonable agreement between x and xLNR, and regularized solutions that have the same
accuracy as xLNR, and that are obtained at a low computational cost. Timings and number of vectors required by

15

LNR NLLr and LNR NLLx to solve problems of dimension 1024 are plotted in Figure 5 (note that abbreviations
have been used for problem’s names). The results seem to indicate an advantage for LNR NLLr over LNR NLLx
for most problems, in terms of both time and storage.

In order to illustrate the savings obtained with the matrix-free iterations, Figure 6 shows the measured time and
number of vectors as a percentage of the time used by LNR and of the full storage n = 1024, respectively. We can
see that the time required by the matrix-free algorithms is under 1% of the time required by the Newton iteration,
and that the storage requirements are under 5% of the problem size, and for many problems, around 2%.

We note also that in our implementation of the matrix-free algorithms, the SVD (and the QR factorization in
LNR NLLx) of matrices that depend on V is calculated from scratch at every iteration. An efficient implementa-
tion should update the previous SVD (and QR factorization in LNR NLLx) since only one column is added to V
at each iteration. We expect further savings in time with such an efficient implementation. We believe that savings
in storage are also possible by changing the size of the initial basis. These issues require further investigation.

Problem OuIt InIt MVP Time Vec ||x−xLNR||
||xLNR||

||x−x∗||
||x∗||

baart 1 12.0 35 0.04 12 9.08e-12 5.39e-02
deriv2, ex. 1 29 3.2 91 0.09 40 5.42e-03 7.50e-02
deriv2, ex. 2 27 3.2 87 0.09 38 5.95e-03 7.25e-02
foxgood 1 10.0 35 0.04 12 2.40e-13 2.26e-03
i laplace, ex. 1 4 4.3 41 0.04 15 1.84e-02 1.36e-01
i laplace, ex. 3 2 6.0 37 0.04 13 2.20e-03 3.05e-03
heat, mild 23 2.0 79 0.08 34 3.03e-04 3.35e-04
heat, severe 28 3.0 89 0.09 39 1.50e-03 8.80e-03
phillips 5 3.8 43 0.04 16 8.08e-04 1.30e-03
shaw 1 10.0 35 0.04 12 8.62e-10 3.18e-02

Table 3: LNR NLLr on Regularization Tools problems, m = n = 300.

Problem OuIt InIt MVP Time Vec ||x−xLNR||
||xLNR||

||x−x∗||
||x∗||

baart 1 7.0 67 0.04 22 1.33e-11 5.39e-02
deriv2, ex. 1 13 3.5 103 0.06 34 1.45e-02 7.95e-02
deriv2, ex. 2 12 3.5 100 0.06 33 1.40e-02 7.58e-02
foxgood 1 6.0 67 0.04 22 1.40e-10 2.26e-03
i laplace, ex. 1 1 7.0 67 0.05 22 3.00e-07 1.30e-01
i laplace, ex. 3 1 6.0 67 0.05 22 7.40e-09 1.93e-03
heat, mild 18 2.0 118 0.08 39 1.78e-04 2.25e-04
heat, severe 14 3.1 106 0.07 35 2.56e-03 9.97e-03
phillips 1 5.0 67 0.04 22 1.67e-05 1.18e-03
shaw 1 7.0 67 0.04 22 1.01e-11 3.18e-02

Table 4: LNR NLLx on Regularization Tools problems, m = n = 300.

16

Problem OuIt InIt MVP Time Vec ||x−xLNR||
||xLNR||

||x−x∗||
||x∗||

baart 1 12.0 35 0.09 12 1.51e-11 5.33e-02
deriv2, ex. 1 33 3.4 99 0.44 44 7.83e-03 6.96e-02
deriv2, ex. 2 31 3.4 95 0.40 42 8.16e-03 6.55e-02
foxgood 1 11.0 35 0.09 12 5.29e-13 1.96e-03
i laplace, ex. 1 7 4.0 47 0.16 18 2.19e-02 1.72e-01
i laplace, ex. 3 4 4.0 41 0.13 15 2.61e-03 3.16e-03
heat, mild 25 2.0 83 0.33 36 1.21e-03 5.50e-04
heat, severe 29 3.1 91 0.37 40 2.27e-03 7.50e-03
phillips 5 4.2 43 0.11 16 9.41e-04 1.41e-03
shaw 1 11.0 35 0.09 12 2.29e-09 3.14e-02

Table 5: LNR NLLr on Regularization Tools problems, m = n = 1024.

Problem OuIt InIt MVP Time Vec ||x−xLNR||
||xLNR||

||x−x∗||
||x∗||

baart 1 7.0 67 0.16 22 4.17e-11 5.33e-02
deriv2, ex. 1 17 3.3 115 0.32 38 1.58e-02 7.45e-02
deriv2, ex. 2 16 3.3 112 0.30 37 1.48e-02 7.08e-02
foxgood 1 6.0 67 0.16 22 3.67e-10 1.96e-03
i laplace, ex. 1 1 7.0 67 0.20 22 1.66e-06 1.67e-01
i laplace, ex. 3 1 6.0 67 0.20 22 2.68e-08 1.96e-03
heat, mild 27 2.0 145 0.48 48 1.14e-03 4.07e-04
heat, severe 15 3.1 109 0.29 36 3.49e-03 9.13e-03
phillips 1 5.0 67 0.16 22 2.89e-05 1.32e-03
shaw 1 7.0 67 0.16 22 1.65e-12 3.14e-02

Table 6: LNR NLLx on Regularization Tools problems, m = n = 1024.

17

(a) (b)

Figure 5: Time (a) and number of vectors (b) required by LNR NLLr (dark) and LNR NLLx (clear), m = n =
1024.

(a) (b)

Figure 6: Percentage of LNR time (a) and of full storage n = 1024 (b) required by LNR NLLr (dark) and
LNR NLLx (clear).

18

8.3 Convergence

In this section, we illustrate the convergence behavior of LNR, LNR NLLr, and LNR NLLx. We also use the
opportunity to present results on problems with non-square matrices. The test problems were generated with the
routine heat from [7] modified to construct non-square matrices. The mildly ill-conditioned problem was used
(κ = 5 in heat). We generated two problems with m × n matrices with m = 1024, n = 300, and m = 300,
n = 1024, respectively. In all tests, τ = 10−1 and ε = ‖b− bo‖. The number of vectors in the initial basis for the
Krylov subspace was 11 for LNR NLLr, and 21 for LNR NLLx.

The convergence plots are presented in Figures 7 and 8. Plots (a) in both figures illustrate the quadratic
convergence of LNR, the Newton iteration. Plots (b) in both figures show that the LNR NLLr iteration converges
non-monotonically. The behavior of LNR NLLx is shown in plots (c). For our two test problems, the convergence
was monotonic. However, we have observed during our experiments that for lower tolerances (which require more
iterations), roundoff error and noise will usually cause non-monotonic behavior in the last iterations.

(a) (b) (c)

Figure 7: Convergence behavior for LNR (a), LNR NLLr (b), and LNR NLLx (c). Problem heat, mild, m =
1024, n = 300, x-axis: iteration index k, y-axis: |ψ(λk)| (a) and ‖Axk − b‖ (b) and (c).

(a) (b) (c)

Figure 8: Convergence behavior for LNR (a), LNR NLLr (b), and LNR NLLx (c). Problem heat, mild, m = 300,
n = 1024, x-axis: iteration index k, y-axis: |ψ(λk)| (a) and ‖Axk − b‖ (b) and (c).

The performance results are shown in Table 7. We observe comparable performance (time and storage) for
LNR NLLr and LNR NLLx when the matrices are 1024×300. For 300×1024 matrices, the storage is comparable
but LNR NLLx requires half the time as LNR NLLr. The times reported correspond to one run of each method.

19

Method / m× n OutIt InIt MVP Time Vec ||x−x∗||
||x∗||

LNR / 1024× 300 7 – – 0.29 300 5.21e-03
LNR NLLr / 1024× 300 38 2.8 109 0.22 49 5.22e-03
LNR NLLx / 1024× 300 22 3.1 130 0.21 43 5.99e-03
LNR / 300× 1024 7 – – 0.30 1024 5.18e-03
LNR NLLr / 300× 1024 37 2.8 107 0.35 48 5.11e-03
LNR NLLx / 300× 1024 21 3.1 127 0.17 42 5.76e-03

Table 7: Performance of LNR, LNR NLLr, and LNR NLLx on heat, mild with rectangular matrices.

8.4 An Image Restoration Problem

In this section, we present a large-scale example from image restoration where we want to recover an image from
blurred and noisy data. The problem was constructed in the following way. A digital photograph of an art gallery
in Paris was blurred with the routine blur from [7]. Then, random Gaussian noise was added to the blurred
image. The n × n matrix A was the blurring operator returned by blur. The data vector b was the blurred and
noisy image stored as a one-dimensional array. The original photograph consisted of 256× 256 pixels. Thus, the
problem dimension was n = 65536. The noise level in b = bo + n was ‖n‖/‖bo‖ = 10−2 as in [16], and also
10−3. Here, bo was a column version of the original image.

The following settings were used in algorithms LNR NLLr and LNR NLLx. The values τ = 10−1 and ε =
2‖b−bo‖ were used in all experiments. The number of vectors in the initial basis for the Krylov subspace was 11
for LNR NLLr, and 21 for LNR NLLx. The results are shown in Figure 9. The waves or ripples observed in the
restorations are due to the famous Gibbs phenomenon (cf. [14]) and are characteristic of least squares restorations.

Table 8 shows the performance of LNR NLLr and LNR NLLx. For noise level 10−2, both methods compute
a solution with similar accuracy to the LSTRS solution (cf. [16]), using fewer matrix-vector products, and a
moderate number of vectors. Table 8 also shows results for lower noise level. In this case, it is possible to obtain
very good restorations. However, in general, low noise will make the regularization problem more difficult to
solve (cf. [17]). In our tests, the new methods indeed computed better restorations both in terms of the 2-norm
relative error and visually (not shown). The problem was considerably more challenging for LNR NLLr than for
LNR NLLx. However, both methods were able to compute a solution with similar accuracy at a low cost.

Method / noise level OutIt InIt MVP Time Vec ||x−x∗||
||x∗||

LNR NLLr / 10−2 1 4.0 35 0.79 12 1.08e-01
LNR NLLx / 10−2 1 4.0 67 2.10 22 1.08e-01
LNR NLLr / 10−3 41 3.0 115 46.67 52 7.13e-02
LNR NLLx / 10−3 6 3.0 82 3.87 27 7.86e-02

Table 8: Performance of LNR NLLr and LNR NLLx on an Image Restoration Problem.

9 Concluding Remarks

In this work, we addressed the least-norm regularization problem, which can be seen as a perturbed least norm
problem where the perturbation represents noise in the data. We have derived optimality (KKT) conditions for a
solution which led to the associated secular equation. We then manipulated these conditions into various forms
that provided a foundation for the development of two new iterative methods suitable for large-scale problems.

20

True image Blurred and noisy image

LNR NLLr restoration LNR NLLx restoration

Figure 9: Restoration of the photograph of an art gallery in Paris. Dimension: 65536, ‖b‖/‖bo‖ = 10−2.

21

We also showed that neither small singular values nor vanishing coefficients in the key rational function have any
influence on the robustness or efficiency of our numerical solution of the secular equation. This is in significant
contrast to the algorithmic difficulties in the standard trust-region subproblem associated with the so-called hard
case (see [15, 16, 17]).

Our work has provided three algorithms: an SVD-based Newton iteration on the associated secular equation,
well suited for small to medium scale dense problems, and two Nonlinear-Lanczos-based matrix-free iterations
suited for large problems. The matrix-free techniques rely on the dense Newton iteration to solve a sequence
of small projected problems. A brief analysis of these matrix-free iterations has shown that the basic iterative
algorithms are closely related to a steepest descent iteration and that a pre-conditioner may easily be incorporated
to provide a Newton-like iteration. The dense algorithm we present here was essentially given by Morozov [13]
although we have made some improvements regarding implementation details. As far as we know, the large-scale
iterative methods are new.

A limited set of numerical experiments were reported to illustrate the performance of the methods on a familiar
test set of small-size problems taken from [7]. We also include computational results for a realistic large-scale
image restoration problem. These results demonstrate that the new methods are robust, efficient, and accurate.
Although more experimentation is needed, the preliminary results seem to indicate that the new techniques are
efficient tools for the numerical treatment of discrete forms of ill-posed problems. The use of preconditioning in
combination with the new methods is the subject of current research and shall be reported in future work.

Acknowledgment. M. Rojas would like to thank Professor Kees Roos of the Software Technology Department at
the Delft University of Technology in The Netherlands for the hospitality during an extended visit during which
most of this work was carried out. We would also like to thank Bill Symes for introducing us to the least norm reg-
ularization problem. Finally, we thank Heinrich Voss for providing the Nonlinear Lanczos/Arnoldi framework [20]
that has turned out to be so effective for this problem as well as for the standard trust-region problem [9].

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, 2004.

[2] L. Eldén. Algorithms for the regularization of ill-conditioned least squares problems. BIT, 17:134–145, 1977.

[3] R. Fletcher. Practial Methods of Optimization. John Wiley & Sons, Chichester, 1987.

[4] W. Gander. Least squares with a quadratic constraint. Numer. Math., 36:291–307, 1981.

[5] G.H. Golub and U. von Matt. Quadratically constrained least squares and quadratic problems. Numer. Math.,
59:561–580, 1991.

[6] P.C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems, Numerical Aspects of Linear Inversion. SIAM,
Philadelphia, 1998.

[7] P.C. Hansen. Regularization Tools version 4.0 for Matlab 7.3. Numer. Algo., 46:189–194, 2007.

[8] M.D. Hebden. An algorithm for minimization using exact second derivatives. Technical Report T.P. 515,
Atomic Energy Research Establishment, Harwell, England, 1973.

[9] J. Lampe, M. Rojas, D.C. Sorensen, and H. Voss. Accelerating the LSTRS Algorithm. Technical Report 138,
Institute of Numerical Simulation, Hamburg University of Technology, Hamburg, July 2009.

[10] G. Landi. The Lagrange method for the regularization of discrete ill-posed problems. Comput. Optim. Appl.,
39:347–368, 2008.

22

[11] J.J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. In G. A. Watson, editor, Numer-
ical Analysis Proceedings Dundee 1977, Lecture Notes in Mathematics 630, pages 144–157. Springer-Verlag,
Berlin, 1977.

[12] J.J. Moré and D.C. Sorensen. Computing a trust region step. SIAM J. Sci. Stat.Comput., 4(3):553–572, 1983.

[13] V.A. Morozov. Methods for solving incorrectly posed problems. Springer-Verlag, New York, 1984.

[14] T.W. Parks and C.S. Burrus. Digital Filter Design. John Wiley & Sons, New York, 1987.

[15] M. Rojas. A large-scale trust-region approach to the regularization of discrete ill-posed problems. Ph.D.
thesis, Department of Computational and Applied Mathematics, Rice University, Houston, Texas, Technical
Report TR98-19, May 1998.

[16] M. Rojas, S.A. Santos, and D.C. Sorensen. Algorithm 873: LSTRS: MATLAB software for large-scale
trust-region subproblems and regularization. ACM Trans. Math. Software, 34(2):11, 2008.

[17] M. Rojas and D.C. Sorensen. A trust-region approach to the regularization of large-scale discrete forms of
ill-posed problems. SIAM J. Sci. Comput., 23(6):1843–1861, 2002.

[18] Gerard L. G. Sleijpen and Henk A. Van der Vorst. A jacobi–davidson iteration method for linear eigenvalue
problems. SIAM Journal on Matrix Analysis and Applications, 17(2):401–425, 1996.

[19] W.W. Symes. Extremal regularization. Technical Report TR99-07, Department of Computational and Ap-
plied Mathematics, Rice University, Houston, Texas, 1999.

[20] H. Voss. An Arnoldi method for nonlinear eigenvalue problems. BIT, 44:387–401, 2004.

23

