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Abstract

We present a new method for large-scale non-negative regularization based
on a quadratically and non-negatively constrained quadratic problem. Such
problems arise for example in the regularization of ill posed problems in image
restoration where the matrices involved are very ill conditioned. The method is
an interior-point iteration that requires the solution of a large-scale and possibly
ill conditioned parametrized trust-region subproblem at each step. The method
uses recently developed techniques for the large-scale trust-region subproblem.
We describe the method and present preliminary numerical results on test
problems and image restoration problems.

1. Introduction

We consider the problem

min 1
2‖Ax − b‖2

s.t. ‖x‖ � �

x � 0

(1)

where A ∈ R
m×n , m � n, b ∈ R

m and � > 0. Throughout the paper, ‖·‖ denotes the �2-norm.
We assume that m and n are large, and that the matrix A might not be explicitly available, but
that we know how to compute the action of A and AT on vectors of appropriate dimensions.

Problem (1) is an important problem that arises for example in the regularization of ill
posed problems from image restoration (cf [1]), where we want to recover an image from
blurred and noisy data. In these problems, the matrix A is a discretized version of a blurring
operator, and b is a vector representation of a degraded image. In image restoration problems,
the norm constraint is a so-called regularization term that controls the growth in the size of
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the least-squares solution observed in most ill posed problems with noisy data, and the non-
negativity constraints reflect the fact that each component of the vector x represents either the
colour value, or the light-intensity value, of a pixel in the digital representation of the image,
and therefore must be non-negative.

Most techniques for image restoration do not take into account the non-negativity
constraints. Instead, they solve the regularization problem, for example, the least-squares
problem with the norm constraint only, and set to zero the negative components in the solution.
This strategy clearly introduces some errors, but produces satisfactory results in certain cases,
such as when the images are normal photographs. However, this is not the case in other
applications. As pointed out in [14, 22], in astronomical imaging most of the pixel values
in the desired solution are actually zero or nearly zero, and therefore setting negative values
to zero might introduce considerable errors, and might yield a restored image with missing
details or with artifacts.

Some of the methods for regularization with non-negativity constraints are [7, 9, 14, 22].
There are also methods that follow the approach of projections on convex sets or POCS methods
such as [24, 33]. Finally, it is worth mentioning the collection of software in [31], which
includes routines for least-squares problems with non-negativity constraints.

The methods in [7] are based on truncated singular-value decomposition (TSVD)
regularization [16]. The approach can be used on large-scale problems by computing only
a few singular values, although in general it is difficult to determine how many values should
be computed. The authors propose methods based on a linearly constrained quadratic problem
and its dual. The primal approach, at least in the current version, can be used only on small
problems. The dual approach is suitable for large-scale problems, although the method might
require additional regularization and it might fail to converge in certain cases. The authors
report results for small problems only. The solutions computed by these methods have very
attractive theoretical properties. The work in [9] proposes an active-set quadratic-programming
method for a problem closely related to (1). This method has been successfully applied to
problems of moderate size (n ≈ 2000), but the current version is prohibitively expensive for
larger problems, such as those in image restoration, where typically n = 65 536. The methods
in [14] are based on a quasi-Newton approach, and appear as promising strategies. The authors
point out that good preconditioners are needed to improve efficiency, and more experiments
are also needed to assess the effectiveness of the methods. The methods in [22] are iterative
methods for linear systems that impose a non-negativity constraint at each step. The methods
achieve regularization by early termination of the iteration, which is based on the heuristic that
initial iterates will not be contaminated by the noise in the data, and which requires a procedure
for determining when to stop the iteration. In practice, most regularization approaches based
on iterative methods rely on visual inspection for stopping the iteration. Preconditioners are
used in [22] to obtain computationally competitive methods.

In this work, we present a new method for large-scale non-negative regularization. Our
method is not based on a heuristic and does not depend on the availability of a preconditioner.
The method is matrix free in the sense that only matrix–vector products with A and AT are
required.

The organization of the paper is the following. In section 2, we present the properties
of problem (1) and we show the relationship of the problem to the Tikhonov regularization
approach with non-negativity constraints. We derive our method for problem (1) in section 3. In
section 4, we present some preliminary numerical results on ill posed problems from inverse
problems, including image restoration problems, and discuss some of the properties of the
method. In section 5, we present some extensions to the main problem that can also be solved
by the method in section 3. Concluding remarks are presented in section 6.
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We shall use the following notation throughout the paper. We denote matrices by capital
letters, vectors by lower-case letters and vector components by the corresponding Greek letter
with a subscript. Given a vector x = (ξ1, ξ2, . . . , ξn)

T , we write diag(x) or diag(ξ1, ξ2, . . . , ξn)

to denote a diagonal matrix with element ξi in the (i, i) position. Finally, we denote the vector
of all ones by e = (1, . . . , 1)T .

2. The problem

We observe that problem (1) always has a solution, which is unique when A has full rank.
Next, we derive optimality conditions satisfied by the solutions of problem (1). Let λ ∈ R and
y ∈ R

n , then the Lagrangian functional associated with the problem is

L(x, λ, y) =
1

2
x T AT Ax − (AT b)T x +

1

2
bT b −

λ

2
(‖x‖2 − �2) + yT x,

and the Karush–Kuhn–Tucker (KKT) first-order necessary conditions for a feasible point x

and Lagrange multipliers λ and y to be a solution of problem (1) are

(i) (AT A − λI )x = AT b − y

(ii) λ(‖x‖2 − �2) = 0
(iii) yT x = 0
(iv) λ � 0, y � 0.

(2)

The vector of Lagrange multipliers (or dual variables) y and the duality gap yT x will play
a key role in the algorithm in section 3.

Observe that, since (1) is a convex quadratic problem, conditions (2) are both necessary
and sufficient. This fact helps us prove an equivalence between problem (1) and another
constrained least-squares problem. Note that, to obtain non-negative regularized solutions, we
could solve the following problem:

min 1
2‖Ax − b‖2 + ε2‖x‖2,

s.t. x � 0
(3)

where ε2 > 0. This is the classical Tikhonov regularization problem with additional non-
negativity constraints. The problem is strictly convex and its solution is, therefore, unique.
Necessary and sufficient conditions for a vector x and Lagrange multipliers y ∈ R

n to be a
solution of problem (3) are

(i) (AT A + ε2 I )x = AT b − y

(iii) yT x = 0
(iv) y � 0.

(4)

Our next result, lemma 2.1, establishes a relationship between problems (1) and (3).

Lemma 2.1. If xλ is a solution of problem (1) with Lagrange multiplier λ < 0, then xλ solves

problem (3). Conversely, a solution xε of (3) solves problem (1) for � = ‖xε‖.

Proof. The proof follows directly by carrying out the appropriate substitutions in the KKT
conditions (2) and (4). The first part follows by setting ε2 = −λ in (4). The second part
follows from the fact that xε solves (3) and � = ‖xε‖. �

In general, the case λ = 0 corresponds to the situation where the norm constraint is not
active and so no regularization is accomplished. In this case we should reduce �. The case
in which λ = 0 and the norm constraint is active can only arise when the matrix A is rank
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deficient and problem (5) may have an infinite number of solutions. Currently, there is no way
of distinguishing between the two cases and so we also reduce � in the latter case.

Both problems (1) and (3) can be used to obtain non-negative regularized solutions.
Problem (3) can be solved, for example, by the methods proposed in [6, 20]. The methods
will work well as long as the problem is well posed, which in turn depends on having a good
estimate of the Tikhonov regularization parameter ε. This parameter does not necessarily have
a physical meaning in applications, and determining its optimal value is a difficult problem
in itself. Most of the methods currently available require the solution of several problems
of type (3) for different values of ε. This approach might be prohibitive in the large-scale
setting. Recent and promising methods for computing the Tikhonov regularization parameter
for large-scale problems have been proposed in [3, 4] and [17]. Note, however, that these
techniques are not designed for the problem with non-negativity constraints.

The approach (1) is better suited for those applications in which the parameter � has a
physical meaning. One such application is image restoration, where � is an estimate of the
energy norm of the target image, or where we want the energy of the restored image to match
a certain value (cf [1]). Applications in geophysics where � is known a priori are discussed
in [13] and [27]. The method we present in this paper is intended for large-scale problems of
type (1). The method can efficiently handle ill posed problems of type (1), including those
instances for which a good estimate of � is not available.

3. The method

Before deriving the method, and for clarity of presentation, we define H = AT A and
g = −AT b, and formulate the following problem equivalent to (1):

min 1
2 x T H x + gT x

s.t. ‖x‖ � �

x � 0.

(5)

In order to develop our method for problem (5), we first eliminate the non-negativity
constraints by restricting our attention to x > 0 and introducing a modified objective function.
Several choices are possible for this function; for example, an entropy function is used in [22].
Although such choices can also be included in our approach, here we shall derive the method
for the logarithmic barrier function, defined as

fµ(x) = 1
2 x T H x + gT x − µ

n
∑

i=1

log ξi ,

where x = (ξ1, ξ2, . . . , ξn)
T and µ > 0 is the so-called barrier or penalty parameter. The use

of the modified function yields a family of problems depending on µ, where each problem is
given by

min fµ(x)

s.t. ‖x‖ � �.
(6)

The Lagrangian functional associated with this problem is

L(x, λ) = fµ(x) −
λ

2
(‖x‖2 − �2),
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where λ ∈ R. Let X = diag(x), then the following are the KKT necessary conditions for a
feasible point x and Lagrange multiplier λ to be a solution of problem (6):

(i) (H + µX−2 − λI )x = −g

(ii) λ(‖x‖2 − �2) = 0
(iii) λ � 0.

(7)

The idea of the method is then to solve a sequence of problems of type (6),while decreasing
the parameter µ towards zero. Notice that by using problem (6) we have restricted the solution
to have positive components only. This follows an interior-point approach (cf [5, 10, 32]), in
which the iterates are feasible and positive.

We shall now introduce a further simplification by substituting the non-linear barrier
problems (6) by quadratically constrained quadratic problems, or trust-region subproblems,
where the objective function will be a quadratic approximation to the logarithmic barrier
function, and where the trust-region radius � will remain fixed. The subproblems are
constructed as follows.

Consider the second-order Taylor expansion of fµ around a point x ,

qµ(x + h) = fµ(x) + ∇ fµ(x)T h + 1
2 hT ∇2 fµ(x)h,

where ∇2 fµ(x) = H + µX−2 and ∇ fµ(x) = H x + g − µX−1e, with X = diag(x). Let us
now formulate the trust-region subproblem

min qµ(x + h)

h

s.t. ‖x + h‖ � �,

(8)

and notice that setting z = x + h we obtain a new trust-region subproblem equivalent to (8),
and given by

min 1
2 zT (H + µX−2)z + (g − 2µX−1e)T z

z

s.t. ‖z‖ � �.

(9)

As established in [11] and [29], necessary and sufficient conditions for a feasible point z and
Lagrange multiplier λ ∈ R to be a solution of problem (9) are

(i) (H + µX−2 − λI )z = 2µX−1e − g

(ii) H + µX−2 − λI positive semidefinite
(iii) λ(‖z‖2 − �2) = 0
(iv) λ � 0.

(10)

Note that (ii) always holds in the convex case.
Our method consists of solving a sequence of problems of type (9) for z, for different

values of µ and x , while driving the barrier parameter µ towards zero, and preserving positive
iterates. The latter is accomplished by means of a linesearch to be described in section 3.3.
Denoting problem (9) by P(x, µ), we can now write our method as algorithm 3.1 in figure 1.

The tolerances εy, ε f , εx are used in the stopping criteria, while σ is used in step 2.4 for
updating µ. Next, we describe each component of the algorithm in detail, namely, the update
of the barrier parameter, the choice of initial values, the linesearch and the stopping criteria.

3.1. Update of the barrier parameter µ

We can derive a formula for updating the barrier parameter by first computing an approximation
to the dual variables y in (2) in the following way. Recall from (2) (i), that y satisfies

y = −(H − λI )x − g,
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Figure 1. Method for trust-region subproblems with non-negativity constraints.

and notice that a solution z, λ of the trust-region subproblem (9) will satisfy (10) (i), which we
can rewrite as

−(H − λI )z − g = µX−2z − 2µX−1e. (11)

We now define

ỹ = −(H − λI )z − g,

and use ỹ as an approximation to y. Observe that we can compute ỹ from (11) as

ỹ = µ(X−2z − 2X−1e), (12)

and when x = z we have the approximation to the duality gap in (2) (iii)

ỹT x = −µn, (13)

which leads to the following formula for µ:

µ =
1

n
ỹT x .

In practice, the update for µ will be

µk+1 =
σ

n
|ỹT x |, (14)

with σ ∈ (0, 1) and x = xk or x = xk+1, and with ỹ as in (12) for µ = µk , x = xk or x = xk+1

and z = zk .

3.2. Choice of initial values x0, µ0

To compute initial values for x and µ, we first solve the trust-region subproblem without the
non-negativity constraints, i.e.

min 1
2 ‖Ax − b‖,

s.t. ‖x‖ � �
(15)

and we denote the solution to this problem and the corresponding Lagrange multiplier by xTRS

and λTRS, respectively. We use xTRS and λTRS to compute an initial value for µ in the following
way.
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We first compute an approximate initial value for the dual variables y as

ỹ0 = −g − (H − λTRS I )xTRS,

and then compute µ0 as

µ0 =
σ

n
|ỹT

0 xTRS|.

We then choose x0 as either x0 = |xTRS| with zero components replaced by a small positive
value, or x0 = xTRS with negative and zero components replaced by a small positive value, so
x0 > 0. We use x0 to test for convergence as described in section 3.4.

3.3. Linesearch

A linesearch is necessary to ensure that the iterates xk remain positive, since there is no
guarantee that zk computed in step 2.1 will have only positive components. The (k + 1)th
iterate is computed as xk+1 = xk + βkhk , where hk = zk − xk and

βk < min
i s.t. 1�i�n and ζi �0

ξi

|ηi |
,

where xk = (ξ1, ξ2, . . . , ξn)
T , zk = (ζ1, ζ2, . . . , ζn)

T and hk = (η1, η2, . . . , ηn)
T .

In practice, we use the following safeguarded formula to update the iterates:

xk+1 = xk + min{1, 0.9995βk}hk .

3.4. Stopping criteria

The stopping criteria rely on the change in value of the objective function, the proximity of the
iterates and the size of the duality gap. For the latter, we compute ỹk according to (12), with
µ = µk−1 or µ = µk , x = xk−1 or x = xk , and z = zk−1 computed in step 2.1 of algorithm 3.1.

Let f (x) = 1
2 x T H x + gT x , and ε f , εx , εy ∈ (0, 1), then for k � 1, algorithm 3.1 proceeds

until

| f (xk) − f (xk−1)| � ε f | f (xk)| or ‖xk − xk−1‖ � εx‖xk‖

or |ỹT
k xk | � εy‖xk‖.

For k = 0 we only check the last condition for the initial values of x and ỹ, i.e.
|ỹT

0 x0| � εy‖x0‖, with ỹ0 and x0 as in section 3.2.

4. Numerical results

In this section, we present numerical results that illustrate some observed properties of the
method TRUSTµ and the performance of the method on image restoration problems. The results
were obtained with a MATLAB 5.3 implementation of algorithm 3.1 applied to constrained
least-squares problems of type (1). We ran our experiments on a SunBlade 1000 with a 750 MHz
processor and 1024 Megabytes of RAM running Solaris 5.8. The floating point arithmetic was
IEEE standard double precision with machine precision 2−52 ≈ 2.2204 × 10−16.

This section is organized as follows. In section 4.1 we discuss the solution of the large-scale
trust-region subproblems in step 2.1 of algorithm 3.1. In sections 4.2 and 4.3 we illustrate two
aspects of the method. The first is the convergence behaviour with respect to the update of the
barrier parameterµ. The second is the accuracy of the approximate solutions. For this purpose,
we use test problems from the Regularization Tools package [15]. All the problems in this
package are discretized versions of Fredholm integral equations of the first kind. In section 4.4
we report results on astronomical imaging problems from the RESTORE Tools package [18].
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The following holds throughout this section:

• xTRS denotes the solution of the trust-region subproblem (15),

• xTRS-P = max{0, xTRS},

• xµ denotes the solution of the non-negatively constrained trust-region problem (1)
computed with TRUSTµ,

• xIP denotes the discretized version of the exact solution of the inverse problem which was
available for all tests,

• � = ‖xIP‖ in all the experiments,

• formulae (12) and (14) were computed using the previous iterate and

• the �2-norm relative error in x with respect to y is computed as usual as ‖x−y‖

‖y‖
.

4.1. Solution of the trust-region subproblems

The trust-region subproblems in step 2.1 of algorithm 3.1 were solved with a MATLAB 5.3

implementation of the method LSTRS from [26]. The method is based on matrix–vector
products with A and AT , and can handle the singularities associated with ill posed problems.
The method has been successfully used to solve regularization problems through the trust-
region approach (15) in seismic inversion and related problems [25, 27]. LSTRS was also
used to compute an initial iterate for TRUSTµ, as discussed in section 3.2.

LSTRS is an iterative method that requires the solution of a large-scale eigenvalue problem
at each step. Unless otherwise indicated, the eigenvalue problems were solved by means of the
implicitly restarted Lanczos method (IRLM) [30] as implemented in ARPACK [19]. The IRLM
is particularly suitable for large-scale problems since it has low and fixed storage requirements
and relies upon matrix–vector products only. In the current implementation of LSTRS, a
Mexfile interface was used to access ARPACK. Note that all the capabilities of ARPACK are now
available through the routine eigs in MATLAB 6. In all the experiments, the parameters for the
IRLM were 11 Lanczos basis vectors with nine shifts (nine matrix–vector products) on each
implicit restart, with a maximum of 13 implicit restarts allowed.

The eigenvalue problems in LSTRS have the form

(

α gT

g H

)

y = λy, (16)

where α is a scalar parameter updated at each iteration, and where we are interested in the
smallest eigenvalue. The goal of LSTRS is to find an optimal value α∗ for the parameter α.
A solution to the trust-region subproblem can then be recovered from the solution of (16) for
α = α∗. We refer the reader to [26] for more details.

One strategy that we have implemented in most of our experiments is to use the optimal
value of α computed by LSTRS for the subproblem in the current iteration of TRUSTµ as
the initial α for solving the subproblem in the next iteration. Intuitively, this would reduce
the number of LSTRS iterations since we do not expect x and µ to change significantly as
TRUSTµ converges, and therefore the trust-region subproblems in step 2.1 of algorithm 3.1
should not differ significantly. In practice, we have observed that using this strategy indeed
reduces the number of LSTRS iterations and consequently the number of matrix–vector
products required.
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Figure 2. Convergence rate of TRUSTµ iterates for (a) linear and (b) quadratic updates of µ.

The tolerances for LSTRS were chosen as follows.

Purpose Value

Relative accuracy in the norm of trust-region solution, ε� ∗

Interior solution, εInt 0
Nearly optimal solution in the so-called hard case, εHC ∗

Update of the parameter α, εα 10−8

Small eigenvector component, εν 10−2

We shall indicate the values of ε� and εHC when we describe each particular experiment.

4.2. Convergence rate with respect to µ

In these experiments, we have chosen problem foxgood from [15], and set the dimensions to
m = n = 300. As described in section 4.1, the method LSTRS was used to compute xTRS,
a solution to (15). LSTRS computed a positive solution for problem foxgood, thus we could
use this solution to test the convergence of the TRUSTµ iterates.

The eigenvalue problems in LSTRS were solved with the Matlab routine eig, and the
initial value of the parameter α was set to zero in each call to LSTRS. The tolerances for
LSTRS were ε� = 10−3 and εHC = 10−10. For this experiment, we did not used the stopping
criteria described in section 3.4; instead, we let the method TRUSTµ run for a large number of
iterations to be able to observe the convergence behaviour.

The convergence behaviour of TRUSTµ for linear and quadratic updates of µ is shown in
figure 2, where xk denotes the TRUSTµ iterates. These results seem to indicate that the method
TRUSTµ has the very desirable property of the convergence rate of the sequence of iterates
being determined by the update of the barrier parameter.
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Figure 3. Problem phillips, n = 300. (a) LSTRS and (b) TRUSTµ solutions. Relative error in
LSTRS solution: 1.0065 × 10−2 . Relative error in TRUSTµ solution: 6.9218 × 10−3 .

4.3. Accuracy of the regularized solution

In this section, we compare the accuracy of regularized non-negative solutions computed with
the method TRUSTµ with respect to regularized solutions that do not take into account the non-
negativity constraints. For this purpose, we chose problem phillips from [15], with dimensions
m = n = 300. We again computed xTRS, a solution to the trust-region subproblem (15), by
means of LSTRS, and we used it to compare the two regularization approaches: with and
without the non-negativity constraints. The eigenvalue problems were solved with ARPACK.
The tolerances for LSTRS were ε� = 10−3 and εHC = 10−10. The tolerances for TRUSTµ

were εy = 10−12 and ε f = εx = 10−5. The update of µ according to (14) was computed with
σ = 0.01.

LSTRS required four iterations and 525 matrix–vector products to compute xTRS. This
solution has a relative error of the order of 10−2 with respect to xIP. Both xIP and xTRS are shown
in figure 3(a) (solid and dashed–dotted curves, respectively). As we can observe in figure 3(a),
and more clearly in a closer look in figure 4(a), xTRS has some negative components. Figure 4(a)
also illustrates the well known Gibbs phenomenon, which is usually seen with band-pass filters
(cf [23]).

We then applied the method TRUSTµ to solve problem (1) for the same test problem. We
used the same LSTRS parameters as before and the initial value for α described in section 4.1.
We set x0 = |xTRS| with zero components replaced by 10−5. We obtained the solution xµ

shown in figure 3(b) (dashed–dotted curve), which has a relative error of the order of 10−3

with respect to xIP, and has only positive components. Figure 4(b) shows that the components
in xµ remain positive, and that the ripples are considerably smaller compared with those in
figure 4(a). Finally, figure 5 shows the difference between xµ and xTRS-P. We observe from
this figure that, once zero components are replaced by a small constant, xTRS-P might provide
a better starting point for TRUSTµ than |xTRS|.

TRUSTµ required one iteration of the main loop in algorithm 3.1 (i.e. two calls to LSTRS),
five LSTRS iterations and 631 matrix–vector products. The results are summarized in table 1.
The value of µ was of the order of 10−16. As we can observe, the cost is only slightly
higher than that needed to compute the first LSTRS solution, and the result is considerably
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Figure 4. Problem phillips, n = 300. Close-up of (a) TRS and (b) TRUSTµ solutions.

Figure 5. Problem phillips, n = 300. Comparison between xTRS-P and xµ. Relative error in
xTRS-P with respect to xµ: 3.6638 × 10−6 .

more accurate. These results seem to indicate that, although solving the problem with non-
negativity constraints involves an additional computational cost, such a cost is not too high
and might be justified by the possibility of obtaining a more accurate regularized solution.

4.4. Image restoration problems

In this section, we present results on image restoration problems from [18]. In imaging
applications such as image restoration, image formation is modelled by an integral equation
of the first kind

γ (s) =

∫

K (s, t)φ(t) dt, (17)
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Table 1. Accuracy of regularized solution.

Matrix–vector LSTRS Relative error
Method products iterations in approximate solution

LSTRS 525 4 1.0065 × 10−2

TRUSTµ 631 5 6.9218 × 10−3

TRUSTµ iterations: 2 (initialization and one iteration of the main loop)

where the kernel K (s, t) is called the point spread function (PSF), that determines the image
of a single point source under the imaging system, φ(t) is the true image and γ (s) is called
a blurred version of φ(t). Imaging systems are called space invariant when the PSF acts
uniformly across source and image spaces, i.e. a translation in the source space corresponds
to a proportional translation on the image space. Most imaging systems can be modelled by a
space invariant PSF. If the system is not space invariant it is called space variant. Such systems
arise for example when recording images of objects that move with different velocities with
respect to the recording device.

The discretization of equation (17) yields a linear system of equations

Ax = b, (18)

where A ∈ R
n×n and b ∈ R

n . The matrix A is a discretized version of the blurring operator
constructed from K (s, t). The vector b = b̄ + η is a vector representation of a version of
the true image degraded by blur and noise, with b̄ being a discretized version of the blurred
image γ (s), and η representing noise. Problem (17) is ill posed, and the discrete problem
(18) usually inherits this feature in the sense that the matrix A is highly ill conditioned, with a
singular spectrum that decays to zero gradually,and high-frequency components of the singular
vectors corresponding to small singular values. In most problems of interest, n is of the order
of tenths of thousandths. Note also that straightforward discretization leads to matrices A that
are block-Toeplitz with Toeplitz blocks. Thus, matrix–vector products involving A and AT

can be efficiently computed by means of the FFT at a cost of O(n log n). This is the way the
matrix–vector products are implemented in [18].

4.4.1. Star cluster. In this section, we consider the problem of restoring the image of a star
cluster, consisting of simulated data used by astronomers to test image restoration methods for
the Hubble space telescope (HST). Such methods are needed to restore images recorded with
the HST before the mirrors in the camera were corrected. See [21] and the references therein
for more details.

The problem is space variant and this should be taken into account when modelling the
imaging system as suggested in [21]. Therefore, we used a combination of four PSFs described
in [21] where the source space is decomposed in four subdomains with a different PSF acting
on each of them. The matrix A represents the blurring operator, constructed from the four
PSFs. The discrete problem is of dimension n = 65 536. The true image, the image recorded
by the HST or data image and the restorations obtained with LSTRS and TRUSTµ are shown
in figure 6.

The tolerances for LSTRS were ε� = 10−2 and εHC = 10−1. The tolerances for TRUSTµ

were εy = 10−2 and ε f = εx = 10−5. The update of µ according to (14) was computed with
σ = 0.01. The initial value was computed as x0 = xTRS, with negative and zero components
replaced by 10−5.

LSTRS required seven iterations and 872 matrix–vector products to compute xTRS in fig-
ure 6 (bottom left), which has a relative error of 1.6743 × 10−1 with respect to xIP. TRUSTµ
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Figure 6. Problem: star cluster, n = 65 536. Relative error in LSTRS solution, 1.6743 × 10−1;
TRUSTµ solution, 1.2358 × 10−1 .

required one iteration of the main loop in algorithm 3.1,eight LSTRS iterations and 973 matrix–
vector products to compute the solution shown in figure 6 (bottom right),which has a relative er-
ror of 1.2358×10−1 with respect to xIP, and only positive components. The results are summa-
rized in table 2. The value of µwas of the order of 10−7. The storage requirement was 11 vectors
of dimension 65 536. The relative error in xTRS-P with respect to xµ was 3.4153×10−1. In this
example we observed the same behaviour as in section 4.3; namely, with a moderate additional
cost over the trust-region solution, we computed a positive solution with improved accuracy.

4.4.2. Satellite. In this section we present another example from astronomical imaging:
restoring the image of a satellite in space. The problem was developed at the US Air Force
Phillips Laboratory, Laser and Imaging Directorate, Kirtland Air Force Base New Mexico, and
is available from [18]. More details about the problem can be found in [14] and the references
therein. The imaging system is again modelled as an integral equation of the first kind (17),
and is space invariant. Therefore only one PSF was used to construct the blurring operator.
The discretized problem is of dimension n = 65 536.

We first used LSTRS to compute the initial values as before. In this case, the strategy
produced a not too clear solution and required 12 iterations and 1363 matrix–vector products.



1304 M Rojas and T Steihaug

Table 2. Performance of LSTRS and TRUSTµ on the star-cluster problem.

Matrix–vector LSTRS Relative error
Method products iterations in solution

LSTRS 872 7 1.6743 × 10−1

TRUSTµ 973 8 1.2358 × 10−1

TRUSTµ iterations: 2 (initialization and one iteration of the main loop)

Table 3. Performance of LSTRS and TRUSTµ on satellite problem.

Method Matrix–vector products Relative error in solution

CGLS 51 3.5995 × 10−1

TRUSTµ 51 3.5848 × 10−1

TRUSTµ iterations: 1 (initialization step)

We believe that the performance of LSTRS can be greatly improved by investigating the features
of this problem. However, our purpose here was a preliminary study of the performance of the
method TRUSTµ, and not of the particular test problems.

We then tried the following strategy to compute initial values for TRUSTµ. Since in
the previous example an interior solution was detected by LSTRS, we decided to compute
the initial values by first computing xLS, an approximate solution to the unconstrained least-
squares problem. We then set x0 = |xLS| with zero components replaced by 10−5. Since
xLS corresponds to an interior solution of the trust-region subproblem (15), we set λ = 0 and
α = −gT xLS. The tolerances for TRUSTµ and the value of σ were as in section 4.4.1.

We used the conjugate gradient method on the normal equations (CGLS) [2, 12] to solve
the normal equations to a prescribed accuracy of the least-squares residual. CGLS required
51 matrix–vector products and so did TRUST µ, because in this case the initial iterate x0

already satisfied the stopping criteria. The value of µ was of the order of 10−16. The storage
requirement was five vectors of dimension 65 536. The relative error in xTRS-P with respect to
xµ was 1.0226 × 10−1. Figure 7 shows the true image, the data and the LSTRS and TRUSTµ

restorations. The performances are summarized in table 3.

5. Extensions

Several extensions of problem (5) can be solved with TRUSTµ. We describe three such
generalizations in this section.

In the first place, we observe that we did not make any assumptions on convexity in the
derivation of the algorithm. Thus, the method can be used to solve general quadratically and
non-negatively constrained quadratic problems in which the Hessian is indefinite. This is a
very desirable feature since it is often the case in ill posed problems that round-off errors will
turn a positive semidefinite matrix into an indefinite one.

We can also treat problems in which the norm constraint is of the form ‖Lx‖ � � when
L is a rectangular, full-rank matrix. In this case, the methods in [8, 16] can be used to transform
the problem into the standard form with L = I .

Finally, we note that general linear inequality constraints can be handled in a
straightforward manner. Assume that the constraints are of the form GT x � c, where
G ∈ R

n×p and c ∈ R
p, and let ω = GT x . Then, we only need to replace X−1 by

GT diag(w)−1, and X−2 by GT diag(w)−2G. These changes only affect the gradient vector and
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Figure 7. Problem: satellite, n = 65 536. Relative error in LSTRS solution, 0.3599; TRUSTµ

solution, 0.3585.

the Hessian (i.e. the matrix–vector products) in the trust-region problem (9), and, therefore,
can be incorporated in a straightforward way into the algorithm.

6. Conclusions

We presented the method TRUSTµ for large-scale non-negative regularization. The method
combines interior-point and trust-region strategies to solve a quadratic problem with a norm
constraint and non-negativity constraints. The method is not based on a heuristic, and it does
not depend on the availability of a preconditioner. The method relies only upon matrix–vector
products with the Hessian matrix, and has low and fixed storage requirements.

We used our method TRUSTµ to compute regularized non-negative solutions to inverse
problems, including test problems from astronomical imaging. For the problems considered,
TRUSTµ computed positive restorations with moderate computational cost and improved
accuracy (see also [28]). Although more experiments are needed to assess the effectiveness
of the method, the initial results are encouraging and present TRUSTµ as a promising method
for large-scale non-negative regularization.
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