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A TRUST-REGION APPROACH TO THE REGULARIZATION OF
LARGE-SCALE DISCRETE FORMS OF ILL-POSED PROBLEMS*

MARIELBA ROJAST AND DANNY C. SORENSEN#

Abstract. We consider large-scale least squares problems where the coefficient matrix comes
from the discretization of an operator in an ill-posed problem, and the right-hand side contains noise.
Special techniques known as regularization methods are needed to treat these problems in order to
control the effect of the noise on the solution. We pose the regularization problem as a quadratically
constrained least squares problem. This formulation is equivalent to Tikhonov regularization, and
we note that it is also a special case of the trust-region subproblem from optimization. We analyze
the trust-region subproblem in the regularization case and we consider the nontrivial extensions of a
recently developed method for general large-scale subproblems that will allow us to handle this case.
The method relies on matrix-vector products only, has low and fixed storage requirements, and can
handle the singularities arising in ill-posed problems. We present numerical results on test problems,
on an inverse interpolation problem with field data, and on a model seismic inversion problem with
field data.
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1. Introduction. Discrete forms of ill-posed problems arise when we discretize
the continuous operator in an ill-posed problem and introduce experimental data
contaminated by noise. One of the main sources of ill-posed problems are inverse
problems, where we want to determine the internal structure of a system from the
observed behavior of the system. Inverse problems arise in many important appli-
cations such as image processing [2], seismic inversion [39], and medical and seismic
tomography [30], [32]. Discrete forms of ill-posed problems are usually formulated as
linear systems or least squares problems. The focus of this paper is the numerical
treatment of large-scale discrete forms of ill-posed least squares problems.

We are interested in recovering x;g, the minimum norm solution of

(1) min [ Az — b,

where A € R™*" h € R™, and m > n. Throughout the paper we assume that
A comes from the discretization of a continuous operator in an ill-posed problem,
and instead of the exact data vector b, only a perturbed data vector b is available.

Specifically, we regard b as b = b + s, where s is a random vector of uncorrelated
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noise. The norm is the Euclidean norm throughout the paper, and it will be denoted
by [ - .

We will assume that the matrix A is large and might not be available explicitly
but that we can compute the action of A and A" on vectors of the appropriate
dimensions. We will also assume that errors in A, due to discretization or finite-
precision representation, are small in comparison to the noise in . Finally, we will
not assume any particular structure for A.

Given the fact that only b is available, we could formulate the problem

(2) min || Az — b

and use its minimum norm solution, denoted by z,s, to approximate z,5. Unfortu-
nately, as we shall see, the two solutions might differ considerably.

If we use a reasonably accurate discretization to obtain A, this matrix will be
highly ill-conditioned with a singular spectrum that decays to zero gradually, a large
cluster of small singular values, and high-frequency components of the singular vectors
associated with small singular values. If, in addition, the discrete Picard condition [16]
holds, we will have that the expansion coefficients of the exact data vector b in the
left singular vectors basis decay to zero faster than the singular values of A, while
the expansion coefficients of the noise vector s remain constant. Therefore, those
components of T, corresponding to small singular values are magnified by the noise.

As a consequence of the ill conditioning of the matrix A and the presence of noise
in the right-hand side, standard numerical algebra methods such as the ones discussed
in [3], [13, Chap. 5], and [26] applied to problem (2) produce meaningless solutions
with very large norm. Therefore, to solve these problems, we need special techniques
known as regularization or smoothing methods. These methods aim to recover infor-
mation about the desired solution of the unknown problem with exact data from the
solution of a better conditioned problem that is related to the problem with noisy
data but incorporates additional information about the desired solution. The formu-
lation of the new problem involves a special parameter known as the regularization
parameter, used to control the effect of the noise on the solution. The conditioning
of the new problem depends on the choice of the regularization parameter. Excellent
surveys on regularization methods can be found, for example, in [15], [20] and more
recently in [31].

While there are many alternatives for solving small- to medium-scale problems,
this is not the case in the large-scale setting. However, in recent years interesting
methods for large-scale ill-posed problems have been proposed. Among these are
Golub and von Matt [14], Bjorck, Grimme, and Van Dooren [4], Calvetti, Reichel,
and Zhang [8], Rojas, Santos, and Sorensen [35], as well as several variants of the
conjugate gradient method on the normal equations (CGLS), including the use of
preconditioners chosen according to the structure of the problem [22], [24], [29]. In
spite of these developments, the efficient solution of large-scale discrete forms of ill-
posed problems remains a challenge.

In practice, the most common approach is to apply the conjugate gradient method
to the normal equations associated with problem (2), taking advantage of what seems
to be an intrinsic regularization property of this method. It has been observed that,
at early stages, CGLS generates iterates with components in the direction of right
singular vectors associated with large singular values, while components associated
with small singular values come into play at later stages. This observation leads
to the heuristic that the number of iterations acts as a regularization parameter.
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Thus, we could compute a regularized solution by stopping the iteration before the
unwanted components contaminate the current approximation. The success of this
approach depends, in the first place, on the reliability of the heuristic and, second, on
accurately determining when to stop the iteration, which is a difficult problem in itself,
and most practical termination strategies rely on visual inspection. We are not aware
of any systematic termination criterion for this approach. Alternatively, we could use
CGLS on the Tikhonov regularization problem, discussed in the next section, which
can be formulated as a damped least squares problem. The success of this approach
depends on a good choice of the damping parameter, and also on the availability of a
preconditioner, and good general preconditioners have not emerged yet. The approach
we propose here does not depend on either a heuristic or a preconditioner.

In this paper, we formulate the regularization problem as a quadratically con-
strained least squares problem. It is well known that this approach is equivalent to
Tikhonov regularization (cf. [10] and the references therein), and we also observe that
the problem is a special case of the problem of minimizing a quadratic subject to a
quadratic constraint, which is known in optimization as the trust-region subproblem
arising in trust-region methods (see also [3, sections 5.3 and 9.2.3]). The connection
between the trust-region subproblem and the regularization problem is well known,
but the specific nature of the numerical difficulties for solving the regularization prob-
lem as a trust-region subproblem was first studied extensively in [34]. We discuss the
properties of the trust-region subproblem in the regularization case and apply the
recently developed method LSTRS [35] for the large-scale trust-region subproblem to
the regularization of discrete forms of ill-posed problems from a variety of applica-
tions. The method relies on matrix-vector products only, has low and fixed storage
requirements and robust stopping criteria, and computes both a solution and the
corresponding Tikhonov regularization parameter. Moreover, LSTRS can efficiently
handle the high-degree singularities associated with ill-posed problems. Most of the
results presented here are based on [34].

The organization of the paper is as follows. In section 2 we describe our regu-
larization approach and show its connection with Tikhonov regularization and with
the trust-region subproblem. In section 3 we describe the trust-region subproblem
and show its special properties in the discrete ill-posed case. In section 4 we describe
the method LSTRS from [35] and discuss the issues related to ill-posed problems. In
section 5 we present numerical results of LSTRS on regularization problems, includ-
ing test problems from the Regularization Tools package [19], an inverse interpolation
problem with field data, and a model seismic inversion problem with field data. We
present some conclusions in section 6.

2. Regularization through trust regions. As we mentioned before, regular-
ization involves the formulation of a problem related to both the original problem
with exact data and the problem with noisy data, where we incorporate a priori in-
formation such as the size or smoothness of the desired solution, the noise level in the
data, or the statistical properties of the noise process.

One of the most popular regularization approaches is the classical Tikhonov reg-
ularization approach [40]

3 in ||Az — b||* + 2| z|?,
3) min Az —blf* + 2],

where €2 > 0 is the regularization parameter, and where the term ||z||* could also be
of the form || Lz||? for a general square or rectangular matrix L. This matrix could be,
for example, the identity matrix as in (3), or a discrete form of first derivative. In the
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first case, the regularization parameter € acts as a penalty parameter on the size of
the solution, while in the latter case € acts as a penalty parameter on the smoothness
of the solution. Notice that if L is any square and nonsingular matrix, then a change
of variable will reduce the problem to the form in (3). We can also accomplish such a
transformation when L is a full-rank rectangular matrix by means of the methods in
[10], [15]. Throughout the paper we assume that this transformation is possible, and
therefore we consider only the case in which L is the identity matrix.

Observe that given e, problem (3) becomes a damped least squares problem that
we can solve with standard numerical linear algebra techniques for medium- and large-
scale problems (cf. [3], [13]). However, determining an optimal value for the Tikhonov
regularization parameter £ can be as difficult as the original problem, and most of
the methods currently available require the solution of several problems of type (3) for
different values of e. This approach might be very expensive in the large-scale setting.
Recent and promising methods for computing the Tikhonov regularization parameter
for large-scale problems have been proposed in [7], [8], and [25]. Calvetti, Reichel, and
Zhang [8] propose a very elegant way of computing the parameter from the noise level
in the data; Calvetti, Golub, and Reichel [7] propose a strategy based on the L-curve
(see [17], [18]); while Kilmer and O’Leary [25] propose several strategies for computing
the parameter from a problem in an appropriate subspace of smaller dimension.

In this work we will not assume a priori knowledge of the noise level or noise prop-
erties. Instead, we will assume that some information about the size or smoothness
of the desired solution is available, and we formulate the regularization problem as

4 min Az —b
) s.t.|lz||<A I I

with A > 0. As we show next, this formulation is equivalent to Tikhonov regulariza-
tion.

Observe that if b & R(A), where R(A) is the range of A, any solution of problem
(4) is a regular point, and therefore the Karush-Kuhn—Tucker conditions for a feasible
point 2, to be a solution of problem (4) with corresponding Lagrange multiplier A, are
(ATA— N1z = —ATb, A\, <0, and A, (||z«|| —A) = 0. Further, since (4) is a convex
quadratic problem, these conditions are both necessary and sufficient. Equivalence
with problem (3) follows directly, since a solution x, to problem (4) is also a solution
to problem (3) corresponding to €2 = —\,. Conversely, if z. is a solution of (3) for a
given ¢, then z. solves problem (4) for A = ||z.].

While Tikhonov regularization involves the computation of a parameter that does
not necessarily have a physical meaning in most problems, the quadratically con-
strained least squares formulation has the advantage that, in some applications, the
physical properties of the problem either determine or make it easy to estimate an
optimal value for the norm constraint A. This is the case, for example, in image
restoration where A represents the energy of the target image (cf. [2]).

Another example is the following problem closely related to (4):

min_ ||z,
st Az—5]|<p

where p is an estimate of the noise level in the data. For A nonsingular, the problem
can be transformed into the form (4) by means of a change of variable. It is possible
to do this in some special applications where an effective approximation to the inverse
of A is available. This is the case in the example presented in section 5.3.
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An additional advantage of the quadratically constrained least squares formula-
tion is that it is a special case of a well-known problem in optimization, namely, that
of minimizing a quadratic on a sphere or the trust-region subproblem

: 1 T T
(5) S DI R
where H € R"*", H = H*, g € R", and A > 0. Problem (4) is a special case of (5)
when H = A" A and g = —A"b.
The high degree of structure of the trust-region subproblem leads to strong theo-
retical properties and makes it possible to design efficient solution methods. For this
reason we shall formulate the regularization problem as a trust-region subproblem.

3. The trust-region subproblem. In this section we present the properties of
the trust-region subproblem. In section 3.1, we consider the problem when H is any
symmetric matrix in R"*™ and g is any vector in R™. In section 3.2, we focus on the
special case when H = ATA, g = —A"b, and in addition A is a discretized version of
a continuous operator in an ill-posed problem and b contains noise.

3.1. Structure of the problem. A first observation about the trust-region
subproblem is that it always has a solution. A not-so-obvious and quite remarkable
fact about the problem is the existence of a characterization of its solutions, discovered
independently by Gay [11] and Sorensen [36]. The result is contained in the following
lemma.

LEMMA 3.1 (see [36]). A feasible vector x. € R™ is a solution to (5) with corre-
sponding Lagrange multiplier . if and only if x., N\« satisfy (H — \.I)z. = —g with
H — )\.I positive semidefinite, A <0, and A\ (A — |Jz.]]) = 0.

Proof. See [36] for the proof. a

The optimality conditions imply that all the solutions of the trust-region sub-
problem are of the form x = —(H — A )Tg+ 2 for z € N'(H — \I), where N/(-) denotes
the null space of a matrix and { denotes pseudoinverse. These solutions may lie in the
interior or on the boundary of the set {z € R™ | ||| < A}. There are no solutions
on the boundary if and only if H is positive definite and |[H 'g|| < A (see [28]). In
this case, the unique interior solution is x = —H ~'¢g with Lagrange multiplier A = 0.
Boundary solutions satisfy ||z|| = A with A < §;, where 4, is the smallest eigenvalue
of H. The case A = §; can only occur if §; <0, g L S1, where S; = N(H — 6;1), and
|(H — 6:1)Tg|| < A. This corresponds to the so-called hard case, which poses great
difficulties for the numerical solution of the trust-region subproblem since in this case
it is necessary to compute an approximate eigenvector associated with the smallest
eigenvalue of H. Moreover, in practice g will be nearly orthogonal to S, and we can
expect greater numerical problems in this case. We call this situation a near hard
case. Note that whenever ¢ is nearly orthogonal to S; there is the possibility for the
hard case or near hard case to occur. Therefore we call this a potential hard case.
We show in section 3.2 that the potential hard case is precisely the common case for
discrete ill-posed problems.

The conditions in Lemma 3.1 are computationally attractive since they provide a
means for reducing the problem of computing boundary solutions for the trust-region
subproblem from an n-dimensional problem to a zero-finding problem in one variable.
We can accomplish this, for example, by solving the following equation in A\, known
as the secular equation:

(6) A — [zl =0,
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where ) = —(H — M) g, and X is monitored to ensure that H — AI is positive
definite. Newton’s method is particularly efficient for solving an equation equivalent
to (6), and this approach, due to Moré and Sorensen [28], is the method of choice
whenever it is affordable to compute the Cholesky factorization of matrices of the
form H — A\I. However, in some applications this computation may be prohibitive
either because of storage considerations or because the matrix H is not explicitly
available. Therefore, we need other strategies to treat the problem in those cases. We
describe one such strategy in section 4.

3.2. Discrete ill-posed trust-region subproblem. We now study the trust-
region subproblem in the special case when H = A”A and g = —A"b, where A
comes from the discretization of a continuous operator in an ill-posed problem, and
b contains noise. We will show that the potential hard case is the common case for
these problems and also that it will occur in a multiple instance, where g is orthogonal
to the eigenpaces associated with several of the smallest eigenvalues of H. This was
first shown in [34] and is a consequence of the following result.

LEMMA 3.2. Let H= AT A and g = —A"b, with b = b+ s. Suppose o}, is the kth
largest singular value of A with multiplicity my. Suppose uj,v;, 1 < j < my, are left
and right singular vectors associated with oy. Then

g"v; = —ak(ufb—ku;s) , 1<j<my.

Proof. The result follows directly assuming A = UXV7” is a singular value de-
composition of A, since this yields g = —VXU*b with V orthogonal. O

Since H = ATA = VX2V7, we see that for discrete ill-posed problems, the hard
case is always present in an extreme form. Lemma 3.2 implies that whenever oy, is
very small then, for any reasonable noise level in b, ¢ will be nearly orthogonal to the
subspace spanned by the right singular vectors associated with o. This is precisely
the case in discrete ill-posed problems, where the matrix A has a large cluster of
very small singular values, and therefore we can expect g to be nearly orthogonal to
the right singular vectors associated with such singular values. Since these vectors
are eigenvectors corresponding to the smallest eigenvalues of AT A, then ¢ will be
orthogonal to the eigenspaces corresponding to several of the smallest eigenvalues of
AT A and the potential hard case will occur in a multiple instance. Figure 1 illustrates
this situation for problem foxgood from the Regularization Tools package by Hansen
[19]. The problem is of dimension 300, and in the logarithmic plot we observe that
g vy, is of order 107*® for approximately 292 of the right singular vectors of A.

Observe that for large noise level and o5 not so small, g will not be nearly or-
thogonal to the eigenspace corresponding to the smallest eigenvalue of AT A and the
hard case will not occur. Therefore, in this case a high noise level implies a less
difficult trust-region subproblem. However, we do not expect to compute a good
approximation in the presence of large noise.

4. LSTRS for discrete ill-posed problems. In this section we give a brief
description of the method LSTRS from [35]. We present the method for a general
symmetric matrix H and nonzero vector g and discuss the advantages of using this
method for the special case of large-scale discrete ill-posed trust-region subproblems
of type (4). LSTRS is based on formulating the trust-region subproblem as a pa-
rameterized eigenvalue problem. Such formulation comes from the observation that
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Fi1G. 1. Orthogonality of g with respect to right singular vectors of a discretized operator in an
ill-posed problem.

if ., A« solve problem (5), then for « = A\, — g"z., problem (5) is equivalent to

(7) min %yTBay
st. YTy <1+ A% eJy=1,

where e; is the first canonical unit vector in R**! and B, = (O‘ g; ) The solution

of the trust-region subproblem consists of the last n components of the solution of
problem (7).

Problem (7) suggests that if we know the optimal value for «, we can solve
the trust-region subproblem by solving an eigenvalue problem for the smallest eigen-
value of B, and an eigenvector with special structure. To see this, observe that if
{\, (1,2™)"} is an eigenpair of By, then

(6w (0 )=(2)

(8) a—A=—¢"z and (H—-A)z=-g.

which is equivalent to

If X is the smallest eigenvalue of B, and since the eigenvalues of H interlace
the eigenvalues of B, by the Cauchy interlace theorem (cf. [33]), then H — Al is
positive semidefinite. Therefore, two of the optimality conditions in Lemma 3.1 are
automatically satisfied in this case. If, in addition, A < 0 and ||z|| = A, we will have
a solution for the trust-region subproblem.
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F1G. 2. Secular function ¢(N).

LSTRS consists of iteratively adjusting the parameter a to drive it towards the
optimal value a, = A, — g"x.. This is accomplished in the following way. Let
d(\) = —g"x for x satisfying (H — A])z = —g, and note that ¢'(\) = z"z. Both ¢
and ¢’ are rational functions with poles at a subset of the eigenvalues of H. Figure 2
illustrates the typical behavior of ¢(\) when H is a 3 x 3 matrix with eigenvalues
0,2,4. The LSTRS iteration is based on approximately solving the secular equation
(6), using rational interpolation on ¢ and ¢’. Observe that, in view of (8), we can
obtain convenient interpolation points by solving eigenvalue problems for the smallest
eigenvalue of B, for different values of the parameter a. LSTRS computes the inter-
polation points in this way, using the implicitly restarted Lanczos method (IRLM)
[37] as implemented in ARPACK [27] to solve the eigenvalue problems. The IRLM
has fixed storage requirements and relies upon matrix-vector products only, features
that make it suitable for large-scale problems.

The strategy described above works as long as the smallest eigenvalue of B, has
a corresponding eigenvector that can be safely normalized to have first component
one. The adjustment of the parameter becomes very difficult in the hard case and
near hard case since in these situations the smallest eigenvalue of B, might not have
a corresponding eigenvector with the desired structure (see [34], [35], [38]). Moreover,
in the near hard case é; is a weak pole of ¢(\) and the function becomes very steep
around this value, as Figure 3 illustrates. This makes the interpolation problem very
ill-conditioned. The situation is considerably more difficult for ill-posed problems
where several of the smallest eigenvalues of H are weak poles of ¢(\). We illustrate
this case in Figure 4 which shows ¢(\) for the test problem to be discussed in section
5.3. LSTRS relies on the complete characterization of the hard case given in [34] to
proceed with the iteration even when the desired eigenvector cannot be normalized
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to have first component one, and to compute nearly optimal solutions in any instance
of the hard case including multiple occurrences as in ill-posed problems.

A detailed description of the results concerning the hard case and the elaborate
algorithmic techniques derived from those results are beyond the scope of this paper.
We refer the reader to [34] and [35] for more details.

From the above presentation we see that LSTRS has desirable features for solv-
ing large-scale trust-region subproblems in general, and for handling discrete ill-posed
problems in particular. This is not surprising since the regularization of discrete forms
of ill-posed problems was part of the motivation for developing the method. There
are, however, some issues that must be taken into account when implementing LSTRS
to treat ill-posed problems. As we saw in section 2, for these problems the smallest
eigenvalues of H are clustered and close to zero, and because of the interlacing prop-
erty the smallest eigenvalues of B, will also be clustered and small for certain values
of A. Computing a clustered set of small eigenvalues with a method that relies only
on matrix-vector products with the original matrix is likely to fail since the multi-
plication will annihilate components precisely in the direction of the eigenvectors of
interest. This difficulty may be overcome through the use of a spectral transforma-
tion. Instead of trying to find the smallest eigenvalue of B, directly, we work with a
matrix function T'(B,) and use the fact that B,q = g\ <= T(B,)q = qT(\). If we
are able to construct 1" so that [T'(A1)| > |T'(A;)|, j > 1, then a Lanczos-type method
such as the IRLM will converge much faster towards the eigenvector ¢; corresponding
to A1. We use a Chebyshev polynomial T, of degree ¢ constructed to be as large as
possible on A; and as small as possible on an interval containing the remaining eigen-
values of B,,. Convergence of IRLM is often greatly enhanced through this spectral
transformation strategy. After convergence, the eigenvalues of B, are recovered via
the Rayleigh quotients with the converged eigenvectors.

Finally, the occurrence of an interior solution when H = A" A is positive definite
in regularization problems deserves a special comment. In this case the solution of
the trust-region subproblem corresponds to the least squares solution of the original
problem. This solution is contaminated by noise and is of no interest. When we detect
an interior solution we have taken the simple approach of reducing the trust-region
radius and restarting the method. It is worth noting that if we knew that the noise
level in the data was low, then if X is close to zero when we detect an interior solution,
we could approximate the least squares solution by z satisfying (8) since this would
be a reasonable approximation to x = —H ~'g. Note that in this case it would not be
necessary to solve a linear system to obtain the solution.

5. Numerical results. In this section we present numerical experiments to il-
lustrate the performance of LSTRS on regularization problems from different sources,
including both test problems and real applications. We used a MATLAB version
of LSTRS running under MATLAB 5.3 using Mexfile interfaces to access ARPACK
[27] and also the routines to compute matrix-vector products in some of the exam-
ples. Notice that the capabilities of ARPACK have been incorporated into MATLAB
6 and are now available through the routine eigs. We ran our experiments on a
SUN Ultrasparc 2 with a 200 MHz processor and 256 Megabytes of RAM running
Solaris 5.6. The floating point arithmetic was IEEE standard double precision with
machine precision 272 a2 2.2204 - 10~'°,

We present three sets of experiments. In section 5.1 we describe the results
obtained on test problems from the Regularization Tools package [19]. In section 5.2
we present an inverse interpolation problem with field data. In section 5.3 we present
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TABLE 1
Results of LSTRS on test problems from the Regularization Tools package.

Problem Dim. A || Haﬁ;f}iﬁ“ MV Prods. | Iter.
Ill heat 300 4.2631 4.2527 3.5684e-01 1721 8
11l heat 1000 7.7829 7.7497 2.6900e-01 967 8
Well heat 300 4.2631 4.2958 9.1853e-02 1049 4
ilaplace 195 2.7629 2.7362 1.8537e-01 349 4
parallax 300 5.0000 5.0421 — 869 10
phillips 300 2.9999 2.9869 2.6883e-02 521 6
phillips 1000 3.0000 2.9839 3.3607e-02 575 6
shaw 300 17.2893 | 17.2467 | 6.0625e-02 510 6
shaw 1000 | 31.5659 | 31.6002 | 5.2847e-02 423 5

a model seismic inversion problem using a standard data set. The various stopping

Hzll=Al
A

tolerances on were chosen (as they often are in practice) in an ad hoc fashion

after some trial runs.

5.1. Problems from the Regularization Tools package. In this section we
will present the results of LSTRS on problems from the Regularization Tools package
[19]. This package consists of a set of MATLAB routines for the analysis of discrete
ill-posed problems along with test problems that are easy to generate. All the test
problems come from the discretization of a Fredholm integral equation of the first
kind

b
| Ks0d = o),

and the problem is to compute the unknown function f(¢) given g(s) and K(s,t).

In all cases we solved a quadratically constrained least squares problem (4) where
A came from the discretization of the kernel K(s,t) and b = g(s;) at discrete points
s; € la,b], where i = 1,...,n and n is the dimension of the problem. For some of the
problems the exact solution f(t) was available and in those cases we used z;, = f(t;)
for comparison purposes, where t; € [a,b], ¢ = 1,...,n. Note that in general Az,
is different from b. Unless otherwise specified, we used A = ||z;p| as trust-region
radius. In ARPACK, we used nine Lanczos basis vectors with seven shifts on each
implicit restart. The required accuracy for the eigenpairs was 1072. The initial vector
for the Lanczos factorization was a randomly generated vector that remained fixed in
all the experiments. We solved the trust-region subproblems to a relative accuracy
of |”IHT7A| < 1072. We also solved the problems to a higher accuracy but this was
computationally more expensive and did not seem to improve the accuracy of the
regularized solution z with respect to the exact solution x;, for this particular set of
problems. In Table 1, we present the results for a subset of problems from [19].

Several observations are in order concerning Table 1. The third and fourth
columns indicate that in all cases LSTRS solved the trust-region subproblem to the
prescribed accuracy. The quality of the regularized solution or a measure of how
well this solution approximates the exact solution z,, is reported in the fifth column,
where a dash indicates that z;, was not available. We see that, generally, there is a
reasonable agreement between computed and exact solutions, with relative errors of
order 1072. The number of matrix-vector products is reported in column six, and the
last column shows the number of LSTRS iterations.

The primary purpose of these tests was simply to verify that our approach would
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compute reasonably accurate regularized solutions to well-known examples of discrete
forms of ill-posed problems. We cannot draw any conclusions about computational
cost or expected number of matrix-vector products from these small examples. How-
ever, our limited experience would indicate that the number of matrix-vector products
does not increase significantly with the dimension of the problem, and we give exam-
ples of this in sections 5.2 and 5.3.

Finally, we remark that some modifications probably would have been possible
to improve the accuracy of the computed solutions to this set of examples. For
problems ill-conditioned heat (inverse heat equation) and ilaplace (inverse Laplace
transformation), the relative error is probably higher than one would like. It turns out
that in these cases the solutions are highly oscillatory. This suggests that we should
have solved the trust-region subproblem with a constraint of the form | Lz||, where
L is a discrete form of first derivative. Since our goal here was a basic verification of
LSTRS on such problems, we did not analyze each case separately, nor did we pursue
more elaborate formulations.

5.2. An inverse interpolation problem. The two-dimensional (2-D) linear
interpolation problem consists of using a linear interpolant to find the values of a
function at arbitrary points given the values of the function at equally spaced points.
A more interesting problem is the inverse interpolation problem: finding the values
of the function on a regular grid of points from which we can extract given values of
the function at irregularly spaced points by linear interpolation. We can pose the 2-D
inverse interpolation problem as a least squares problem,

min ||Az — b]|,
TER™

where A € R™*" is the 2-D linear interpolant and b € R™ contains the function
values at irregularly spaced points.

To illustrate the performance of LSTRS on this kind of problem we will use the
example of constructing a depth map of the Sea of Galilee on a regular grid of points,
given depth measurements at irregularly spaced points. The data consists of triplets
v, Wi, byt =1,...,132044, representing coordinates on the plane and depth, respec-
tively. The data was collected from a ship using an echo sounder. The data contains
noise coming from different sources, including malfunctioning equipment that reported
zero depths at points in the middle of the lake and the fact that the measurements
were taken at different times of the year and therefore varied greatly from rainy season
to dry season. See [1] for a complete description of the data acquisition process. In
Figure 5 we show a view from above of a three-dimensional (3-D) plot of the original
data. The straight lines we observe in the figure are the tracks of the ship. Therefore,
the data acquisition process was an additional source of noise. As Claerbout points
out [9], an image of the sea should not include those lines.

In our experiments the size of the grid was n = 201 x 201 = 40401, which is
also the number of unknowns when the 2-D grid is represented as a one-dimensional
vector. The number of rows in A was m = 132044. This matrix was ill-conditioned
and was not available explicitly, but we could compute the action of A and A" on
vectors by means of FORTRAN routines. In all the experiments, we solved the trust-
region subproblems to a relative accuracy of |M%| < 1073, The size of the Lanczos
basis was five, and we applied three shifts on each implicit restart. Therefore, the
storage requirement was essentially five vectors of length 40401.
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Fia. 5. Sea of Galilee from original data.

We posed the trust-region subproblem as

1
min = —zTATAzx — (ATb)"x,
s.it.||Lz||[ <A 2

where L was either the n x n identity matrix I, or the matrix M, a discretization of
the following pth power of the (scaled) 2-D Helmholtz operator

(9) (T — V7" x diag(s) * V)P,

where 7, V, and V7 are the identity, gradient, and divergence operators, respectively;
the vector s > 0 is a 2-D vector of scales; the expression diag(s) denotes a diagonal
matrix with the components of the vector s on the diagonal; and p is a real scalar.

We ran several experiments for different trust-region radii since in this applica-
tion we did not have a priori information about the size or smoothness of the desired
solution. Figure 6 shows the result for A = 6000 and L = I. This image still shows
the tracks of the ship and does not reveal any known features of the depth distribu-
tion of the lake. The contour plot (not shown) is very rough with highly oscillatory
contours. This suggested the need to introduce a constraint on the smoothness of the
solution.
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Fic. 6. Sea of Galilee, regularizing with constraint on size of solution.

We then solved the trust-region subproblem with L = M), a discretization of (9),
and A = 26000. Figure 7 shows the solution for p = 0.3. In this image we were
able to identify some of the features reported in [1], such as the shallow areas in the
northeast, a scarp in the southeast, and a more prominent scarp in the southwest.

We also tried the approach of solving the trust-region subproblem with L = I and
applying the Helmholtz operator a posteriori. We call this approach postsmoothing.
We tried the postsmoothing approach with p = —1 for A = 23423, which is the
norm of z when ||[Mpz|| = 26000, and we obtained an image very similar to the
one in Figure 7. We also used this approach for A = 6000, obtaining the image in
Figure 8, which clearly shows the features mentioned before. Table 2 shows that the
postsmoothing approach is less expensive than using a constraint on the smoothness.
There are two reasons for this difference in efficiency. The first one is that the matrix-
vector products when L = M), are more expensive than the matrix-vector products
when L = I. The second reason is that the smallest eigenvalues of B, are close to the
smallest eigenvalues of L~ "ATAL™", and these are more clustered for L = M,, than
for L = I. This causes slow convergence of the IRLM. We note, however, that the
cost is not too high in either approach relative to the dimension of the problem.

The postsmoothing approach has the drawback that we do not know its physical
meaning, and a closer look at the result shows that the postsmoothing is causing a
high degree of perturbation on the depths since the lowest point is known to be around
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Fi1G. 7. Sea of Galilee, reqularizing with constraint on smoothness.

256m below sea level, and the lowest point in Figure 8 is -45m. Another interesting
aspect of this particular regularization approach is that it produces very smooth
solutions, which was also noted in [21], and this causes, for example, the resulting
regular grid to miss the true deepest point located approximately at coordinates
(207,247) and yields a deepest point located at approximately (205, 245) for Figure 8.
It is quite remarkable, though, how the known features of the lake are clearly present
in this image.

5.3. A model seismic inversion problem. We also solved the quadratically
constrained least squares problem (4) where the problem comes from the discretiza-
tion of the linear viscoacoustic model. As explained in [6], this model describes the
behavior of an anelastic fluid, in which the strain response to a change of stress is
linear but not completely instantaneous. A relaxation function G(t,Z) is used to ex-
press the stress-strain relation. The equations of motion relate G(t, Z), the material
density p(Z), the pressure (stress) p(t,Z), the particle velocity (¢, Z), and the body
force source f(t,Z) in the following way:

(10) p,t(ta f) = 7G’(ta f) * V- E(ta f) + f(ta f)a
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Fic. 8. Sea of Galilee, regularizing with constraint on size of solution and postsmoothing.

TABLE 2
Performance of LSTRS on an inverse interpolation problem.

Dimension: 40401 LSTRS MV CPU time
Storage: 5 vectors A [|lz«]| Tter. Prods. (min.)
TRS with

postsmoothing 23423 23423 4 206 1.40
Constraint

on smoothness 26000 | 25980.61 15 723 22.05

where p =0, £ =0 for ¢t < 0. In (10), t denotes time and Z denotes position.

These equations are used in [6] to model the propagation of waves in marine
media using the relaxation function for a standard linear fluid. The matrix A in
our quadratically constrained least squares problem corresponds to DF', a linearized
version of the forward map or prediction operator. The matrix A" corresponds to
the adjoint of DF denoted by DF*. The operators DF and DF* were not explicitly
available, but their action on vectors was obtained by solving a simplified (layered)
and linearized version of (10). See [5, Chap. 5] and [6] for more details. The data
vector b is a seismogram containing velocities of waves measured in oil wells in the
North Sea. The data is part of the Mobil AVO data set [23], a standard data set for
testing inversion methods. The parameters to be estimated in the experiment are the
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TABLE 3
Performance of LSTRS on the viscoacoustic wave equation.

LSTRS MV
Dimension | A | |zl Tter. Prods. | Storage
121121 0.5 | 0.5 2 15 4 vectors

stress-strain ratio under simple hydrostatic pressure and the material density. The
quadratically constrained least squares problems arise in the context of sophisticated
nonlinear inversion strategies [12], where the norm constraint was of the form ||z|| < A.
The quadratically constrained least squares problems were obtained from problems of

type

min_ ||z
s.t.||Az—b||<p

by means of a change of variable made possible by the availability of an effective
approximation to the inverse of A. The parameter p is an estimate of the noise level
in b and is known a priori in this case. The reformulation of the problem yields A = p.

The dimensions of the problem are m = n = 121121. Table 3 shows the result
obtained when we used LSTRS to solve the trust-region subproblem to an accuracy
of |HIHT7A| < 107° using four Lanczos basis vectors. The method is very efficient for
small A since in this case the smallest eigenvalue of B, is well separated from the
rest and the IRLM converges rapidly to such eigenvalue. For larger A, the eigenvalue
of interest belongs to a cluster and the TRLM needs more iterations to compute it.

In Table 3 we can observe the low storage and low number of matrix-vectors
products required to solve the problem to a very high accuracy.

6. Conclusions. We considered the problem of regularizing large-scale discrete
forms of ill-posed problems arising in several applications. We posed the regularization
problem as a quadratically constrained least squares problem, showed the relationship
of this approach to Tikhonov regularization and to the trust-region subproblem, and
analyzed the latter in the ill-posed case.

We have presented numerical results obtained when we used the recently devel-
oped method LSTRS for the large-scale trust-region subproblem to solve regulariza-
tion problems from a wide variety of applications including problems with field data.
The method requires solving a sequence of large-scale eigenvalue problems, which is
accomplished with a variant of the Lanczos method. An important feature of LSTRS
is that it computes both the solution and the Tikhonov regularization parameter from
the prescribed norm.

LSTRS is particularly suitable for large-scale discrete forms of ill-posed problems,
for which it computed regularized solutions close to the desired exact solutions using
limited storage and moderate computational effort in general. For real applications
the method required a low number of matrix-vector products with respect to the
dimension of the problem, and storage comparable to or less than the conjugate
gradient method. Our approach also had the desirable feature of providing systematic
stopping criteria.

We are currently investigating various approaches to preconditioning, aiming to
generate eigenvalue problems that can be solved more efficiently. Although further
improvement is needed, LSTRS proved to be a promising method for the numerical
treatment of large-scale discrete forms of ill-posed problems in which the norm of the
desired solution is prescribed.
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