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1. INTRODUCTION

We describe version 1.2 of a MATLAB 6.0 implementation of the LSTRS
method [Rojas et al. 2000] for large-scale quadratic problems with a quadratic
constraint, or trust-region subproblems:

min
1
2

xT Hx + g T x subject to (s.t.) ‖x‖ ≤ �, (1)

where H is an n× n, real, symmetric matrix, g is an n-dimensional real vector,
and � is a positive scalar. In (1), and throughout the article, ‖ · ‖ denotes the
Euclidean norm. The following notation is also used throughout the article: δ1

denotes the algebraically smallest eigenvalue of H, S1 ≡ N (H − δ1 I ) denotes
the corresponding eigenspace, N (·) denotes the nullspace of a matrix, and †
denotes the pseudoinverse.

Problem (1) arises in connection with the trust-region globalization strategy
in optimization. A special case of problem (1), namely, a least squares problem
with a norm constraint, is equivalent to Tikhonov regularization [Tikhonov
1963] for discrete forms of ill-posed problems. The Lagrange multiplier associ-
ated with the constraint is the Levenberg-Marquardt parameter in optimiza-
tion and the Tikhonov parameter in regularization. A constraint of the form
‖Cx‖ ≤ � for a matrix C �= I is not considered in this work. The matrix C
can be used, for example, as a scaling matrix in optimization or to impose a
smoothness condition on the solution in regularization. Note that when C is
nonsingular, a change of variables can be used to reduce the problem to the
case we are considering.

The trust-region subproblem has very interesting theoretical properties that
lead to the design of efficient solution methods. In particular, if it is possible to
compute the Cholesky factorization of matrices of the form H−λ I , the method of
choice is probably the one proposed by Moré and Sorensen [1983]. The algorithm
uses Newton’s method to find a root of a scalar function that is almost linear on
the interval of interest. The authors also proposed a computationally-efficient
strategy for dealing with a special and usually difficult case, known since then
in the optimization literature as the hard case. The hard case is discussed in
detail in Section 2.

If the matrix H is very large or not explicitly available, factoring or even
forming the matrices H − λ I may be prohibitive and a different approach is
needed to solve the problem. Possibly, the most popular method for the large-
scale trust-region subproblem is the one of Steihaug [1983] and Toint [1981].
The method computes the solution to the problem in a Krylov space and is
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efficient in conjunction with optimization methods. An improvement upon the
Steihaug-Toint approach, based on the truncated Lanczos idea, was proposed
by Gould et al. [1999]. Hager [2001] adopts an SQP approach to solve the trust-
region subproblem in a special Krylov subspace. New properties of the trust-
region subproblem that provide useful tools for the development of new classes
of algorithms in the large-scale scenario are presented by Lucidi et al. [1998].
Other authors that have considered large-scale problems are Golub and von
Matt [1991], Sorensen [1997], Rendl and Wolkowicz [1997] (revisited by Fortin
and Wolkowicz [2004]), Rojas et al. [2000] and Pham Dinh and Le Thi [1998].
The theory of Gauss quadrature, matrix moments and Lanczos diagonaliza-
tion is used in Golub and von Matt [1991] to compute bounds for the optimal
Lagrange multiplier and solution. The hard case is not analyzed in Golub and
von Matt [1991]. The algorithm in Pham-Dinh and Le-Thi [1998] is based on
differences of convex functions, and is inexpensive due to its projective nature.
However, a restarting mechanism is needed in order to guarantee convergence
to a global solution. The approaches in Rendl and Wolkowicz [1997], Rojas et al.
[2000], and Sorensen [1997] recast the trust-region subproblem as a parame-
terized eigenvalue problem and design an iteration to find an optimal value for
the parameter. A primal-dual semidefinite framework is proposed in Rendl and
Wolkowicz [1997], with a dual simplex-type method for the basic iteration and
a primal simplex-type method for the hard-case iteration. In Rojas et al. [2000]
and Sorensen [1997], two different rational interpolation schemes are used for
the update of the scalar parameter. In Sorensen, a superlinearly-convergent
scheme is developed for the adjustment of the parameter, as long as the hard
case does not occur. In the presence of the hard case, the algorithm in Sorensen
[1997] is linearly convergent. In Rojas et al. [2000], a unified iterative scheme
is proposed which converges superlinearly in all cases.

It is possible to classify methods for the trust-region subproblem based on
the properties of the computed solution. We will call an approximation to an
optimal solution of problem (1) (see Section 2.1), a nearly-exact solution; and
any other approximation, an approximate solution. Accordingly, we can make
a distinction between nearly-exact methods and approximate methods. The
methods in Fortin and Wolkowicz [2004], Golub and von Matt [1991], Moré and
Sorensen [1983], Pham-Dinh and Le-Thi [1998], Rendl and Wolkowicz [1997],
Rojas et al. [2000], and Sorensen [1997] are nearly exact, while the methods
in Gould et al. [1999], Hager [2001], Steihaug [1983], and Toint [1981] are
approximate. Approximate solutions (and methods) are of particular interest in
the context of trust-region methods for optimization. In regularization, nearly
exact solutions are often required.

In this article, we describe a set of MATLAB 6.0 routines implementing the
nearly-exact method LSTRS from Rojas et al. [2000]. LSTRS is suitable for
large-scale computations since it relies on matrix-vector products only and has
low and fixed storage requirements. As mentioned above, LSTRS is based on a
reformulation of problem (1) as a parameterized eigenvalue problem. The goal
of the method is to compute the optimal value for a scalar parameter, which
is then used to compute a solution for problem (1). The method requires the
solution of an eigenvalue problem at each step. LSTRS can handle all instances
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of the trust-region subproblem, including those arising in the regularization
of ill-posed problems. The method has been successfully used for computing
regularized solutions of large-scale inverse problems in several areas [Eldén
et al. 2005; Rojas 1998; Rojas and Sorensen 2002; Rojas and Steihaug 2002].

The MATLAB implementation of LSTRS described in this article allows the
user to specify the matrix H explicitly, a feature that can be useful for small
test problems, and implicitly, in the form of a matrix-vector multiplication rou-
tine; hence preserving the matrix-free nature of the original method. Several
options are available for the solution of the eigenvalue problems, namely: the
MATLAB routine eig (QR method), a slightly modified version of eigs (a MEX-
file interface for ARPACK [Lehoucq et al. 1998]) a combination of eigs with
a Tchebyshev Spectral Transformation as in Rojas and Sorensen [2002], or a
user-provided routine.

The article is organized as follows. In Section 2, we present the properties
of the trust-region subproblem and its connection with regularization. In Sec-
tion 3, we describe the method LSTRS from Rojas et al. [2000]. We discuss the
use of the software for regularization problems in Section 4. In Section 5, we
present comparisons of LSTRS with other methods for the large-scale trust-
region subproblem. In Section 6, we discuss the use of LSTRS on large-scale
problems and present an application from image restoration. We present con-
cluding remarks in Section 7.

2. TRUST REGIONS AND REGULARIZATION

In this section, we describe the trust-region subproblem as well as its connec-
tion with the regularization of discrete forms of ill-posed problems. We present
the properties of the trust-region subproblem in Section 2.1 and discuss regu-
larization issues in Section 2.2.

2.1 The Structure of the Trust-Region Subproblem

The trust-region subproblem always has a solution that lies either in the inte-
rior or on the boundary of the feasible set {x ∈ IRn, ‖x‖ ≤ �}. A characterization
of the solutions of problem (1), found independently by Gay [1981] and Sorensen
[1982], is given in the following lemma where we have followed Sorensen [1997]
in the nonstandard but notationally more convenient use of a nonpositive mul-
tiplier.

LEMMA 2.1 [SORENSEN 1982]. A feasible vector x∗ ∈ IRn is a solution to (1)
with corresponding Lagrange multiplier λ∗ if and only if x∗, λ∗ satisfy (H −
λ∗ I )x∗ = −g with H − λ∗ I positive semidefinite, λ∗ ≤ 0 and λ∗(�− ‖x∗‖) = 0.

PROOF. For the proof see Sorensen [1982].

Lemma 2.1 implies that all solutions to the trust-region subproblem are of
the form x = −(H −λ I )† g +z, for some z ∈ N (H −λ I ). If the Hessian matrix H
is positive definite and ‖H−1 g‖ < �, problem (1) has a unique interior solution
given by x = −H−1 g , with Lagrange multiplier λ = 0. If the Hessian is positive
semidefinite or indefinite, there exist boundary solutions satisfying ‖x‖ = �

with λ ≤ δ1.
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The case λ = δ1 is usually called the hard case in the literature [Moré
and Sorensen 1983]. The hard case can only occur when δ1 ≤ 0, g ⊥ S1 and
‖(H−δ1 I )† g‖ ≤ �. For most problems of interest, solving the trust-region prob-
lem in the hard case can be an expensive and difficult task since it requires the
computation of an approximate eigenvector associated with the smallest eigen-
value of H. Moreover, in practice g will be nearly orthogonal to S1 and we can
expect greater numerical difficulties in this case. As in Rojas [1998] and Rojas
and Sorensen [2002], we call this situation a near hard case. Note that when-
ever g is nearly orthogonal to S1 there is the possibility for the hard case or
near hard case to occur, depending on the value of �. Therefore we call this
situation a potential hard case.

The occurrence of the exact, near, or potential hard case is structural: it de-
pends on the relationships among the matrix H, the vector g , and the scalar
�. Although not too common in optimization, the near hard case is rather fre-
quent in regularization. Indeed, it was shown in Rojas [1998] and Rojas and
Sorensen [2002] that the potential hard case is precisely the common case for
discrete forms of ill-posed problems, where it occurs in a multiple instance in
which the vector g is orthogonal or nearly orthogonal to several eigenspaces of
H. We discuss these issues in Section 2.2.

2.2 The Trust-Region Approach to Regularization

In this section, we first describe the properties of discrete forms of ill-posed
problems and show how they lead to the use of regularization. We then discuss
the connection of trust regions and regularization. Finally, we describe the
properties of the trust-region subproblem in the regularization context.

Discrete forms of linear ill-posed problems consist of linear systems or lin-
ear least squares problems in which the coefficient matrices come from the
discretization of the continuous operator in an ill-posed problem and the right-
hand side contains experimental data contaminated by noise. The discretization
of continuous problems in inversion [Bertero and Bocacci 1998; Natterer 1986;
Nolet 1987; Symes 1993] usually leads to highly ill-conditioned problems, called
discrete forms of ill-posed problems, or discrete ill-posed problems, in the lit-
erature. Reasonably accurate discretizations will produce coefficient matrices
whose properties are the discrete analogs of those of the continuous operators.
In particular, the matrices will be highly ill-conditioned with singular spectra
that decay to zero gradually with no particular gap, and will have a large cluster
of very small singular values Hansen [1998]. Moreover, as observed in Hansen
[1998], the high-frequency components (those with more sign changes) of the
singular vectors will usually correspond to the smallest singular values.

We consider the problem of recovering xLS , the minimum-norm solution to:

min ‖Ax − b‖
x ∈ IRn,

where A ∈ IRm×n, b ∈ IRm, and m ≥ n, when the exact data vector b is not
known, and instead, only a perturbed data vector b̄ is available. Specifically,
we regard b̄ as b̄ = b + s, where s is a random vector of uncorrelated noise.
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Considering that only b̄ is available, we could try to approximate xLS by x̄LS ,
the minimum-norm solution to:

min ‖Ax − b̄‖. (2)

x ∈ IRn
.

Unfortunately, as we now show, the two solutions might differ considerably.
Let A = U�V T be a Singular Value Decomposition (SVD) of A, where U ∈

IRm×n has orthormal columns ui, V ∈ IRn×n is orthogonal with columns vi, and
� is a diagonal matrix with elements σ1, σ2, . . . , σn. The σi ’s are the singular
values of A in nonincreasing order. The solution of problem (2) in terms of the
SVD of A is given by:

x̄LS =
n∑

i=1

uT
i b
σi

vi +
n∑

i=1

uT
i s
σi

vi. (3)

As usual in the analysis of discrete forms of ill-posed problems, we assume that
the Discrete Picard Condition (DPC) [Hansen 1990] holds: that the values |uT

i b|
overall decay to zero faster than σi as the index i increases. Assuming that the
DPC holds, the first term in the right-hand side of (3) is bounded. However,
the second term might become very large since the expansion coefficients of the
uncorrelated noise vector (uT

i s) remain constant while the singular values decay
to zero. Therefore, the components of x̄LS corresponding to small singular values
are magnified by the noise and x̄LS might be dominated by the high-frequency
components. Consequently, standard methods such as those in Björck [1996],
Golub and Van Loan [1996, Ch. 5], and Lawson and Hanson [1995] applied to
problem (2) usually produce meaningless solutions with very large norms. Note
that even in the noise-free case, the ill conditioning of the matrix A will pose
difficulties to most numerical methods. Therefore, to solve these problems, a
special technique known as regularization is needed.

In regularization, we aim to recover an approximation to the desired solu-
tion of the unknown problem with exact data from the solution of a better-
conditioned problem that is related to the problem with noisy data but incor-
porates additional information about the desired solution. The conditioning of
the new problem depends on the choice of a special parameter known as the
regularization parameter. Excellent surveys on regularization methods can be
found for example in Hanke and Hansen [1993], Hansen [1998], and Neumaier
[1998].

One of the most popular regularization approaches is Tikhonov regulariza-
tion [Tikhonov 1963], which consists of adding a penalty term to problem (2) to
obtain:

min ‖Ax − b̄‖2 + μ‖x‖2, (4)
x ∈ IRn

where μ > 0 is the Tikhonov regularization parameter. It is well known [Eldén
1977; Rojas and Sorensen 2002] that this approach is equivalent to a special
instance of the trust-region subproblem, namely, to a least squares problem
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with a quadratic constraint:

min ‖Ax − b̄‖2 s.t. ‖x‖ ≤ �, (5)

where H = AT A and g = −AT b̄. Therefore, in principle, methods for the
trust-region subproblem could be used to solve regularization problems of type
(5), where instead of specifying a value for the Tikhonov parameter as re-
quired for (4), we need to prescribe a bound on the norm of the desired solution.
However, as we shall see, the trust-region subproblem (5) has special properties
in the regularization context and these properties should be taken into consid-
eration when developing solution methods. The following analysis is based on
Rojas [1998] and Rojas and Sorensen [2002].

We now show that the potential (near) hard case is the common case for ill-
posed problems, where it occurs in a multiple instance, with g nearly orthogonal
to the eigenspaces associated with several of the smallest eigenvalues of H.
This was first shown in Rojas [1998]. Assume that the singular values of A
are not zero and that σn, the smallest singular value, has multiplicity k. Let
n − k + 1 ≤ i ≤ n and let vi be a right-singular vector of A associated with σn.
Then:

g T vi = −b̄TU�V T vi = −σnuT
i b̄ = −σn

(
uT

i b + uT
i s

)
.

If there is no noise in the data (s = 0) and if the DPC holds, the coefficients
uT

i b, for n − k + 1 ≤ i ≤ n, are small and since σn is also small, it follows that
g is nearly orthogonal to vi in this case. For noisy data, g T vi might not be
small due to the possible contribution of the term uT

i s. However, for severely ill-
conditioned problems, the smallest singular value σn is so close to zero that even
if uT

i s is large, g will still be nearly orthogonal to vi. Since vi is an eigenvector
corresponding to δ1 = σn

2, the smallest eigenvalue of AT A, we have that g will
be nearly orthogonal to the eigenspace corresponding to the smallest eigenvalue
and therefore, the potential (near) hard case will occur.

Observe that in ill-posed problems, the matrix A usually has a large cluster
of singular values very close to zero. Therefore, following the previous argu-
ment, we see that the vector g will be orthogonal, or nearly orthogonal, to the
eigenspaces corresponding to several of the smallest eigenvalues of the matrix
AT A, and the potential hard case will occur in multiple instances. The numerical
experimentation presented in Rojas [1998] and Rojas and Sorensen [2002] in-
dicates that the LSTRS algorithm can efficiently handle the multiple instances
of orthogonality (or near orthogonality) based on the complete characterization
of the hard case given in Rojas [1998].

3. THE LSTRS METHOD

In this section, we present a description of the LSTRS method with special
emphasis on the computational aspects. For more details, as well as for the
theoretical foundations and the convergence properties of the method, we refer
the reader to Rojas [1998] and Rojas et al. [2000].

LSTRS is based on a reformulation of the trust-region subproblem (1) as a pa-
rameterized eigenvalue problem. The new formulation is based on the fact that
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there exists a value of a scalar parameter α such that problem (1) is equivalent
to:

min
1
2

y T Bα y

s.t. y T y ≤ 1 + �2, eT
1 y = 1,

(6)

where Bα is the bordered matrix Bα = ( α gT

g H ), and e1 is the first canonical vec-
tor in IRn+1. The optimal value for α is given by α∗ = λ∗ − g T x∗, with λ∗, x∗
the optimal pair in Lemma 2.1. Observe that if we knew α∗, we could com-
pute a solution to the trust-region subproblem from the algebraically smallest
eigenvalue of Bα∗ and a corresponding eigenvector with a special structure. The
solution would consist of the last n components of the eigenvector and the La-
grange multiplier would be the eigenvalue. LSTRS starts with an initial guess
for α and iteratively adjusts this parameter toward the optimal value. This is
accomplished by solving a sequence of eigenvalue problems for Bα, for different
α’s, as we now show.

Let α be a scalar, let λ be the algebraically smallest eigenvalue of Bα, and
assume that there exists a corresponding eigenvector that can be safely normal-
ized to have the first component equal to one. For such an eigenvector, (1, xT )T ,
we have: (

α g T

g H

) (
1
x

)
= λ

(
1
x

)
⇔ α − λ = −g T x

(H − λ I )x = −g (7)

and consequently, two of the optimality conditions in Lemma 2.1 are automat-
ically satisfied by the pair λ, x. Namely, (H − λ I )x = −g with H − λ I positive
semidefinite. The latter holds by the Cauchy Interlace Theorem [Parlett 1980],
which states that the eigenvalues of H interlace the eigenvalues of Bα, for any
value of α. In particular, λ, the algebraically smallest eigenvalue of Bα is a lower
bound for δ1, the algebraically smallest eigenvalue of H, and therefore H − λ I
is positive semidefinite.

The relationship α = λ − g T x could provide a way of updating α. Indeed,
LSTRS uses this relationship to adjust the parameter. Note that from (7),
−g T x = g T (H − λ I )† g = φ(λ), which is a rational function in λ with poles at
the distinct eigenvalues of H. Therefore, the first equation in (7) can be written
as α = λ + φ(λ). Since φ is expensive to compute, instead of using this function
directly to update α, LSTRS uses a rational interpolant for φ. The interpola-
tion points are obtained by solving an eigenvalue problem for the algebraically
smallest eigenvalue of Bα and a corresponding eigenvector, since the eigenpair
provides suitable values for λ, φ(λ) and also for φ′(λ) = g T ((H − λ I )†)2 g = xT x.
The value of α is then computed as α = λ̂ + φ̂ (̂λ), where φ̂ is the rational in-
terpolant, and λ̂ satisfies φ̂′ (̂λ) = �2. One could regard the LSTRS iteration as
translating the line α −λ until it intersects the graph of φ at the point where φ

has slope �2, as Figure 1 illustrates. Each new value of α replaces the 1,1 entry
of Bα and an eigenvalue problem is solved for each new bordered matrix. A safe-
guarding strategy is used to ensure the convergence of α to its optimal value.

The procedure we just described relies on the assumption that there ex-
ists an eigenvector corresponding to the algebraically smallest eigenvalue of
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Fig. 1. LSTRS method: the standard case.

the bordered matrix that can be safely normalized to have its first component
equal to one. The strategy breaks down in the presence of a zero or very small
first component. This situation is equivalent to one of the conditions for the
hard case and is illustrated in Figure 2. The eigenvector of interest will have
a first component zero or nearly zero if and only if the vector g is orthogonal
or nearly orthogonal to S1, the eigenspace corresponding to the algebraically
smallest eigenvalue of H. Therefore, a small first component indicates the po-
tential occurrence of the hard case. In terms of the function φ, this means that
δ1 is not a pole or a very weak one, and φ will be very steep around such a pole,
causing difficulties in the interpolation procedure. LSTRS handles this case by
computing two eigenpairs of the bordered matrix at each step: one correspond-
ing to the algebraically smallest eigenvalue of Bα, and the other, corresponding
to another eigenvalue of Bα. Under certain conditions, both eigenpairs can be
used to construct an approximate solution for the trust-region subproblem.

We will now describe the main components of LSTRS: the computation of
initial values, the interpolation schemes, the safeguarding strategies, and the
stopping criteria. We will also describe the different tolerances needed by the
method. We will focus on the results leading to the computational formulas
and omit their derivations. We refer the reader to Rojas [1998] and Rojas et al.
[2000] for more details.
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Fig. 2. LSTRS method: the near hard case. φ solid, φ̂ dashed.

In the remainder of this section, λ1 refers to the algebraically smallest eigen-
value of Bα and λi to any of the remaining ones. An eigenvector of Bα is denoted
by (ν, uT )T , where ν is a scalar and u is an n-dimensional vector.

3.1 Initial Values

Initial values are needed for δL, δU , αL, αU , and α. The values δL and δU are lower
and upper bounds for δ1, the algebraically smallest eigenvalue of H. The values
αL, αU , are lower and upper bounds for α∗, the optimal value for the parameter
α.

Initial values are computed as in Rojas et al. [2000]: δU is chosen as either
the Rayleigh quotient uT Hu

uT u , for a random vector u, or as the minimum diagonal
element of H; αU is set to δU + ‖g‖�. An initial value for α can be chosen as
either α(0) = min{0, αU} or α(0) = δU . The value α(0) is used to construct a first
bordered matrix Bα(0) for which two eigenpairs, corresponding to λ1 and to λi,
are computed. As discussed before, the algebraically smallest eigenvalue is a
lower bound for δ1, and consequently we set δL = λ1. A lower bound for α is given
by αL = δL − ‖g‖

�
. It was shown in Rojas et al. [2000] that the interval [αL, αU ]

contains α∗ and therefore, it is used as the initial safeguarding interval for the
parameter α. We remark that an adjusting procedure is applied to α(0) in order to
ensure that one of the two eigenvectors of Bα(0) can be safely normalized to have
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first component one. The existence of an eigenvector with this special structure
is guaranteed by the theory [Rojas et al. 2000]. This eigenvector, (ν, uT )T and
the corresponding eigenvalue λ provide an initial iterate {λ(0), x(0)}, with λ(0) = λ

and x(0) = u
ν
. This iterate will be used in the computation of α(1) by the 1-point

rational interpolation scheme [Rojas et al. 2000], used to interpolate the pair
(λ(0), φ(λ(0))). The scheme yields:

α(1) = λ̂ + φ̂ (̂λ) = α(0) + α(0) − λ(0)

‖x(0)‖
(

� − ‖x(0)‖
�

) (
� + 1

‖x(0)‖
)

, (8)

where λ̂ = (x(0))T Hx(0)

(x(0))T x(0) + gT x(0)

‖x(0)‖� .

The value α(1) is used to construct a second bordered matrix Bα(1) for which
two eigenpairs are computed. As before, an adjusting procedure is applied to
α(1) to ensure the availability of an eigenvector with the required structure.
This eigenvector, (ν, uT )T and the corresponding eigenvalue λ provide the new
iterate {λ(1), x(1)}, with λ(1) = λ and x(1) = u

ν
. Observe that from the k-th LSTRS

iterate we have λ = λ(k), φ(λ) = −g T x(k), and φ′(λ) = (x(k))T x(k). Therefore, the
first two iterates, {λ(0), x(0)} and {λ(1), x(1)}, provide the first six values required
in the 2-point rational interpolation scheme used to construct an interpolant
for φ, which in turn is used to update the parameter α in the main iteration of
LSTRS.

3.2 Update of α

The 2-point interpolation scheme [Rojas et al. 2000] used to compute α(k+1),
k ≥ 1, yields:

α(k+1) = ωα(k−1) + (1 − ω)α(k)

+
∥∥x(k−1)

∥∥∥∥x(k)
∥∥(∥∥x(k)

∥∥ − ∥∥x(k−1)
∥∥)

ω
∥∥x(k)

∥∥ + (1 − ω)
∥∥x(k−1)

∥∥
(
λ(k−1) − λ̂

)(
λ(k) − λ̂

)(
λ(k) − λ(k−1)

) , (9)

where ω = λ(k)−λ̂

λ(k)−λ(k−1) , α(k−1) = λ(k−1) +φ(λ(k−1)) and α(k) = λ(k) +φ(λ(k)), and where

λ̂ = λ(k−1)
∥∥x(k−1)

∥∥(∥∥x(k)
∥∥ − �

) + λ(k)
∥∥x(k)

∥∥(
� − ∥∥x(k−1)

∥∥)
�

(∥∥x(k)
∥∥ − ∥∥x(k−1)

∥∥) ·

3.3 Adjustment of α

Each computed value of α(k), k ≥ 0, is adjusted to ensure that one of the two
eigenpairs of Bα(k) has an eigenvector that can be safely normalized to have
first component equal to one. As previously mentioned, the existence of such an
eigenvector is guaranteed by the theory [Rojas et al. 2000, Theorem 3.1]. This
eigenvector is needed to construct the rational interpolants used to derive the
updates (8) and (9), and continue the iterations of LSTRS. Figure 3 presents
the adjusting procedure.

3.4 Safeguarding of α

The use of an interpolant for the update of α might yield values that are far
from the desired optimal value α∗. Therefore, a safeguarding interval [αL, αU ],

ACM Transactions on Mathematical Software, Vol. 34, No. 2, Article 11, Publication Date: March 2008.



11:12 • M. Rojas et al.

Fig. 3. Adjustment of α.

Fig. 4. Safeguarding of α.

containing α∗, is maintained and updated throughout the iterations, and each
value of α is safeguarded so it belongs to this interval. The safeguarding strategy
is presented in Figure 4.

3.5 Stopping Criteria

3.5.1 Boundary Solution. We detect a boundary solution, according to
Lemma 2.1, whenever the following two optimality conditions are satisfied:(∣∣∣∣

∥∥∥∥u1

ν1

∥∥∥∥ − �

∣∣∣∣ ≤ ε� ∗ �

)
and (λ1 ≤ 0)

for a given ε� ∈ (0, 1). It suffices to check these two conditions since, as shown
in the analysis of (7), the other two optimality conditions are satisfied by the
eigenpair corresponding to the algebraically smallest eigenvalue of each of the
bordered matrices generated in LSTRS. The solution to (1) in this case is λ∗ =
λ1 and x∗ = u1

ν1
.
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3.5.2 Interior Solution. We detect an interior solution when

(‖u1‖ < �|ν1|) and (λ1 > −εInt),

for a given εInt ∈ [0, 1). In this case, the solution is λ∗ = 0 and x∗ such that Hx∗ =
−g , with H positive definite. An unpreconditioned version of the Conjugate
Gradient Method is used to solve the system in this case.

3.5.3 Quasi-Optimal Solution. Let ψ(x) = 1
2 xT Hx + g T x be the quadratic

objective function of problem (1). Then, we say that a vector x̃ is a quasi-optimal
or nearly-optimal solution for problem (1), if ‖̃x‖ = � and if ψ (̃x) is sufficiently
close to ψ(x∗), the value of the objective function at the true solution of (1): if
for a given tolerance η ∈ (0, 1),

|ψ (̃x) − ψ(x∗)| ≤ η

1 + η
|ψ(x∗)|. (10)

A quasi-optimal solution can only occur in the hard case or near hard case.
A sufficient condition for (10) to hold is the basis for the stopping criterion in
the hard case. The condition has the same flavor as Lemmas 3.4 and 3.13 in
Moré and Sorensen [1983], and was established in Theorem 3.2 and Lemmas
3.5 and 3.6 of Rojas et al. [2000]. Theorem 3.2 establishes that, under certain
conditions, the last n components of a special linear combination of eigenvectors
of Bα form a nearly-optimal solution for problem (1). Lemma 3.5 establishes the
conditions under which the special linear combination can be computed, and
Lemma 3.6 shows how to compute it. The three results combined yield the
stopping criterion presented in Figure 5.

3.5.4 The Safeguarding Interval is Too Small. If the safeguarding inter-
val for α, [αL, αU ], satisfies |αU − αL| ≤ εα max{|αL|, |αU |} for a given tolerance
εα ∈ (0, 1), then the interval cannot be further decreased and we stop the iter-
ation. If (ν, uT )T is one of the two available eigenvectors of the bordered matrix
such that ν is not small, then x = u

ν
and λ = λ1 are in general, good approxi-

mations to x∗, λ∗, and we return them as the approximate solution pair. If, in
addition, ‖x‖ < � (hard case) and if an approximate eigenvector corresponding
to the algebraically smallest eigenvalue of H is available, we add to x, a com-
ponent in the direction of this eigenvector to obtain x∗ such that ‖x∗‖ = �. This
strategy was thoroughly described in Moré and Sorensen [1983] and Sorensen
[1997, Section 5], and was also adopted in Rojas [1998] and Rojas et al. [2000].
Note that the necessary eigenvector will usually be available from the LSTRS
iteration. The updated x∗ is returned along with λ1 as a solution pair.

3.5.5 Maximum Number of Iterations Reached. The user may specify the
maximum number of LSTRS iterations allowed and the method will stop when
this number is reached.

3.6 Tolerances

LSTRS requires a few tolerances for the stopping criteria and also for some
computations. The different tolerances and their meanings are summarized
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Fig. 5. Conditions for a quasi-optimal solution.

in Table I. The MATLAB implementation of LSTRS provides a set of default
values for the tolerances.

3.7 Algorithm

The strategies and procedures described in Sections 3.1 through 3.5 are the
building blocks for the LSTRS method, shown in Figure 6.

4. LSTRS FOR REGULARIZATION

A few considerations are in order when using the LSTRS MATLAB software
for regularization problems, for which H = AT A and g = −AT b̄.

In the first place, since the potential near hard case is the common case
for these problems (cf. Section 2.2), the solution will usually be quasi-optimal.
However, it might happen that the exact hard case is detected, which will cause
a correction term to be added to the iterate so it can have the desired norm
(see Section 3.5.4). The correction term is in the direction of an eigenvector
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Table I. Tolerances for LSTRS

ε� The desired relative accuracy in the norm of the trust-region solution. A
boundary solution x satisfies |‖x‖−�|

�
≤ ε� ·

εHC The desired accuracy of a quasi-optimal solution. If x∗ is the true solution and x̃
is the quasi-optimal solution, then ψ(x∗) ≤ ψ (̃x) ≤ (1 − εHC)ψ(x∗), where
ψ(x) = 1

2 xT Hx + g T x.

εInt Used to declare the algebraically smallest eigenvalue of Bα positive in the test for
an interior solution: λ1 is considered positive if λ1 > −εInt ·

εα The minimum relative length of the safeguarding interval for α. The interval is
too small when |αU − αL| ≤ εα ∗ max{|αL|, |αU |} ·

εν The minimum relative size of an eigenvector component. The component ν is

small when |ν| ≤ εν

‖u‖
‖g‖ ·

maxiter The maximum number of iterations allowed.

Fig. 6. LSTRS: an algorithm for large-scale trust-region subproblems.

corresponding to the smallest eigenvalue of H. In general, such correction term
is not desirable in regularization, since it might bring high-frequency compo-
nents into the solution (cf. Section 2.2). Therefore we recommend not adding
the correction term for regularization problems. To indicate this choice, the
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upup

Fig. 7. Interior and boundary solutions for a positive semidefinite Hessian.

user should set the input parameter lopts.correction to a string that does not
begin with ‘y’ or ‘Y’. Note that, if the correction term is not added, the solution
provided by LSTRS is not a solution to the original trust-region subproblem,
but a regularized solution corresponding to a smaller value of �.

The second consideration concerns interior solutions. For problem (2), an
interior solution corresponds to the unconstrained least squares solution. Such
solution is unique if the Hessian matrix is positive definite. If the Hessian is
positive semidefinite and singular, it might be that both interior and boundary
solutions exist, as illustrated in Figure 7, where we can see that there are
infinite solutions along the dashed line in the “valley.” The least squares solution
is of no interest in regularization since it is contaminated by the noise in the
data. In general however, we have no means of distinguishing between the
positive definite and the positive semidefinite cases. Therefore, we recommend
not computing the least squares (interior) solution, when such a solution is
detected for a regularization problem. To indicate this choice, the user should
set the input parameter lopts.interior to a string that does not begin with ‘y’

or ‘Y’. In this case, a message is displayed advising the user to decrease �. The
current iterate is returned since it might be useful in some situations. Note that
if λ is small and an interior solution is detected, then the current iterate x(k) is
an approximation to x = −H−1 g = (AT A)−1(AT b̄), which is the interior solution.
If in addition, the noise level in b̄ is low, x(k) will be a reasonable approximation
to the desired solution.

A final note on regularization problems concerns the eigensolver. As we saw
in Section 2.2, for these problems, the smallest eigenvalues of the Hessian
matrix are usually clustered and close to zero, and because of the interlacing
property, the smallest eigenvalues of Bα will also be clustered and small for
certain values of �. Computing a clustered set of small eigenvalues with a
method that relies only on matrix-vector products with the original matrix is
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likely to fail since the multiplication will annihilate components precisely in the
direction of the eigenvectors of interest. This difficulty may be overcome through
the use of a spectral transformation. Instead of trying to find the smallest
eigenvalue of Bα directly, we can work with a matrix function T (Bα) and use
the fact that Bαq = qλ ⇐⇒ T (Bα)q = qT (λ). If we are able to construct
T so that |T (λ1)| � |T (λ j )|, j > 1, then a Lanczos type method such as the
Implicitly Restarted Lanczos Method (IRLM) [Sorensen 1992] will converge
much faster toward the eigenvector q1 corresponding to λ1. As in Rojas and
Sorensen [2002], we use a Tchebyshev polynomial T� of degree �, constructed to
be as large as possible on λ1 and as small as possible on an interval containing
the remaining eigenvalues of Bα. The convergence of the IRLM is often greatly
enhanced through this spectral transformation strategy. After convergence, the
eigenvalues of Bα are recovered via the Rayleigh quotients with the converged
eigenvectors. We provide the routine tcheigs lstrs gateway, implementing a
Tchebyshev Spectral Transformation with a polynomial of degree � = 10. We
recommend the use of this routine for most regularization problems.

A less expensive alternative to the Tchebyshev Spectral Transformation
consists of using zero as eigenvalue and the available Lanczos vectors (not
converged eigenvectors) returned by the eigensolver (e.g. eigs lstrs) to con-
struct an LSTRS iterate. The rationale behind this heuristics is that zero is
a lower bound for the smallest eigenvalue of H = AT A, and that the Lanczos
vectors are rich in the direction of the eigenvectors of interest. Note that the
safeguarding mechanisms of LSTRS guarantee convergence also in this case.
This option is available through the input parameter lopts.heuristics and can
only be used in combination with the eigensolver eigs lstrs. If the heuristics
does not yield satisfactory results, then lopts.heuristics must be set to zero
and the Tchebyshev Spectral Transformation must be used.

5. COMPARISONS

In this section, we compare LSTRS with other methods for the large-scale trust-
region subproblem. The methods used for comparisons were the Sequential
Subspace Method (SSM) of Hager [2001], the Semidefinite Programming ap-
proach (SDP) of Fortin and Wolkowicz [2004], and the Generalized Lanczos
Trust Region method (GLTR) of Gould et al. [1999]. Note that only LSTRS, SSM
and SDP are limited-memory methods. For SSM, results are reported only for
the two matrix-free variants SSM and SSMd . The methods are described in
Section 5.1.

We used MATLAB implementations of LSTRS, SSM, and SDP, and a Fortran
90 implementation of GLTR. It is important to note that the four codes are at
different stages of maturity. The GLTR code is the routine HSL VF05 of the HSL
library [HSL 2004]. The SSM and SDP codes are initial implementations, not
yet released publicly, that were kindly provided by their authors for the purpose
of these comparisons. In particular, the SDP code is still under development.
The double precision version of HSL VF05 was used whereas the MATLAB
codes were run under MATLAB 6.0. The experiments were carried out on a SUN
Ultra-250 with a 400 MHZ processor and 2048 Megabytes of RAM, running

ACM Transactions on Mathematical Software, Vol. 34, No. 2, Article 11, Publication Date: March 2008.



11:18 • M. Rojas et al.

Solaris 5.8. The floating point arithmetic was IEEE standard double precision
with machine precision 2−52 ≈ 2.2204 · 10−16.

We ran the codes on three different families of problems whose Hessian
matrices were as follows: the 2-D Discrete Laplacian, UDUT with U orthogonal
and D diagonal, and a discretized operator from the inverse heat equation. The
Laplacian is a frequently used model problem in CFD applications, the UDUT

matrix allows for the exploration of ill conditioning and the effect on the hard
case, while the inverse heat equation is a well-known ill-posed problem.

For the first two families of problems, we report the average number of
matrix-vector products (MVP), of the number of vectors (STORAGE), and of
the value of the optimality measure ‖(H−λ I )x+g‖

‖g‖ , from a sample of ten related
problems in each family. Time is not reported, due to the different nature of the
implementations: three MATLAB interpreted codes and one Fortran 90 stand-
alone code. Since the methods use different stopping criteria, the tolerances
were adjusted so that the methods computed a solution with ‖(H−λ I )x+g‖

‖g‖ of
the order of 10−6. Finally, the results used to compute the averages correspond
to the choice of options for which each method required the lowest number of
matrix-vector products. For the third family of problems, we report the number
of matrix-vector products, the storage, the optimality measure, and the relative
error of the solution with respect to the true solution to the inverse problem.
We report the best results in terms of this relative error out of several trials
with each method.

This section is organized as follows. A brief description of the methods used
for comparisons is presented in Section 5.1. A detailed description of the three
families of problems, the settings for each of the codes, and the results, are
presented in Sections 5.2, 5.3, and 5.4, respectively. The discussion of the results
is presented in Section 5.5.

5.1 Methods for Large-Scale Trust-Region Subproblems

SSM

SSM considers subproblems restricted to a Krylov subspace and by imposing
that this subspace contains the iterate generated by one step of the sequential
quadratic programming (SQP) algorithm applied to the trust region subprob-
lem, a locally quadratic convergent scheme is obtained. The SQP method is
equivalent to Newton’s method applied to the nonlinear system

(H − λ I )x + g = 0

1
2

xT x − �2

2
= 0.

The use of the minimum residual solution ensures locally quadratic conver-
gence even for degenerate problems with multiple solutions and a singular Jaco-
bian for the first order optimality conditions. Hager observed in his experiments
that appropriate small-dimensional subspaces could be generated by combin-
ing preconditioned Krylov spaces with minimum residual techniques [Hager
2001]. Two preconditioned schemes corresponding to a diagonal preconditioner
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(SSMd ) and an SSOR-type of approach (SSMssor ) were suggested in Hager
[2001]. Note that the SSMssor variant is not matrix-free.

SDP

The SDP method is an extension of the semi-definite programming approach
of Rendl and Wolkowicz [1997]. The current algorithm maintains the primal-
dual philosophy of the previous and introduces a novel strategy for the hard
case, which combines shifting of the eigenvalues and deflation. The equality-
constrained trust-region subproblem is, due to duality, equivalent to an un-
constrained concave maximization problem in one variable. The evaluation
of the objective function of this problem depends on the determination of
the algebraically smallest eigenvalue of a parameterized eigenvalue problem,
similar to the idea employed by LSTRS. In the MATLAB working code pro-
vided by the authors, the eigenvalue is computed with MATLAB’s subroutine
eigs.

GLTR

The GLTR approach is based on the Lanczos tridiagonalization of the matrix
H and on the solution of a sequence of problems restricted to Krylov spaces,
inspired by the Steihaug-Toint algorithm [Steihaug 1983; Toint 1981]. GLTR
uses a weighted �2 norm that defines the trust region and plays the role of
preconditioning. The method is an alternative to the Steihaug-Toint algorithm,
which further investigates the trust-region boundary whenever it is reached,
and keeps the efficiency of the preconditioned conjugate gradient method inside
the trust region.

Although GLTR does not require any factorization of H, the Lanczos vectors
are needed to recover the minimizer of the original problem. Therefore, the
Lanczos vectors should be either stored or regenerated [Gould et al. 1999, p. 509]
and limited-storage requirements may be lost.

The software package is available as the Fortran 90 module HSL VF05 in the
Harwell Subroutine Library [HSL 2004], and it is also part of the GALAHAD
Optimization Library, version 1.0 [Gould et al. 2002].

5.2 The 2-D Discrete Laplacian Family

In this family of problems, the Hessian matrix was H = L − 5I , where L is the
standard 2-D discrete Laplacian on the unit square based upon a 5-point stencil
with equally-spaced mesh points. The diagonal shift of −5 was introduced to
make H indefinite. The order of H was n = 1024. We used the four trust-
region solvers to solve a sequence of ten related problems, differing only by the
vector g , randomly generated with entries uniformly distributed on (0, 1). The
trust-region radius was fixed at � = 100.

We studied problems with and without the hard case. To generate the hard
case, we orthogonalized the random vectors g against the eigenvector q corre-
sponding to the algebraically smallest eigenvalue of H. We accomplished this
by setting g := g −q(qT g ). For the easy and hard cases we added a noise vector
to g , of norm 10−8.
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Table II. Average Results for the 2-D Laplacian, n = 1024

METHOD MVP STORAGE ‖(H−λ I )x+g‖
‖g‖

LSTRS 127.1 10 2.32 ×10−6

SSM 67.3 10 9.53×10−7

SSMd 67.3 10 9.53×10−7

SDP 595 10 3.17×10−5

GLTR 81.6 41.3 8.56×10−6

(a) Easy Case

METHOD MVP STORAGE ‖(H−λ I )x+g‖
‖g‖

LSTRS 252.6 10 6.91 ×10−6

SSM 377.9 10 1.42×10−6

SSMd 377.9 10 1.42×10−6

SDP 2023.8 10 5.76×10−2

GLTR 151.8 76.4 8.37×10−6

(b) Hard Case

For the limited-memory methods (LSTRS, SSM, SSMd , and SDP) the number
of vectors was fixed at 10, and 8 shifts were applied in each implicit restart in
ARPACK. Other parameters were as follows. LSTRS: for the easy case, ε� =
10−5, εHC = 10−11; for the hard case, εHC = ε� = 10−11. In both cases, δU = ‘mindiag’
and α(0) = δU as in Rojas et al. [2000]. The initial vector for ARPACK was
e/

√
n + 1, where e is the vector of all ones. Default values were used for the

remainder of the parameters. SSM, SSMd : ‖(H − λI )x + g‖ was required to
be less than or equal to tol = 10−5; one of the initial vectors in a relevant
Krylov subspace was chosen as the vectors of all ones. SDP: the tolerance for the
duality gap was set to 10−10 in the easy case and 10−9 in the hard case. GLTR: the
tolerance for the optimality measure was set to 10−5 and the required fraction of
the optimal value of the objective function was set to 1. The desired optimality
level could not be achieved for lower fractions of the optimal objective value.
This was also the case in the other experiments.

The results are presented in Table II. For the easy case, SSM required about
50 and GLTR required a relatively low number of matrix-vector products but
used more than three times the storage of the limited-memory methods. For the
hard case, LSTRS required about 30 SSM. GLTR required the lowest number
of matrix-vector products but more than six times the storage of the limited-
memory methods.

ACM Transactions on Mathematical Software, Vol. 34, No. 2, Article 11, Publication Date: March 2008.



LSTRS: Trust-Regions and Regularization • 11:21

5.3 The UDUT Family

In these problems, the matrix H was of the form H = UDUT , with D a diag-
onal matrix with elements d1, . . . , dn and U = I − 2uuT , with uT u = 1. The
elements of D were randomly generated with a uniform distribution on (−5, 5),
then sorted in nondecreasing order and d1 set to −5. Both vectors u and g
were randomly generated with entries selected from a uniform distribution on
(−0.5, 0.5) and then u was normalized to have unit length. The order of H was
n = 1000. There was a total of ten problems.

In this case, the eigenvectors of the matrix H are of the form
qi = ei − 2uui, i = 1, . . . , n with ei the i-th canonical vector in IRn, and ui

the i-th component of the vector u. The vector g was orthogonalized against
q1 = e1 − 2uu1, and a noise vector was added to g . Finally, g was normalized
to have unit norm. The noise vectors had norms 10−2 and 10−8, for the easy
and hard cases, respectively. To ensure that the hard case really occurred, we
computed �min = ‖(H − d1 I )† g‖, and set � = 0.1�min for the easy case and
� = 5�min for the hard case.

For the limited-memory methods (LSTRS, SSM, SSMd and SDP), the number
of vectors was fixed at 10 in the easy case and 24 in the hard case. Other
parameters were as follows. LSTRS: for the easy case, δU was set to the minimum
of the diagonal of UDUT , α(0) = δU , the adaptive tolerance for the eigenpairs
was 0.2, and 8 shifts were applied in each implicit restart; for the hard case,
δU = −4.5, α(0) = ‘min’, the adaptive tolerance for the eigenpairs was 0.03, and
12 shifts were applied in each implicit restart; ε� = 10−4, εHC = 10−10. More basis
vectors were needed in the hard case since the eigenvalues were computed
to a higher accuracy. The initial vector for ARPACK was e/

√
n + 1, where e

is the vector of all ones. Default values were used for the remainder of the
parameters. SSM, SSMd : tol = 10−6 and one of the initial vectors in a relevant
Krylov subspace was chosen as the vectors of all ones. SDP: the tolerance for
the duality gap was set to 10−11 in the easy case and 10−12 in the hard case.
GLTR: the tolerance for the KKT (Karush-Kuhn-Tucker) condition was set to
10−5 for the easy case and 10−7 for the hard case. The fraction of the optimal
value of the objective function was set to 1.

The results are reported in Table III. The SSM methods outperformed all
methods for the hard case. GLTR was comparable in both computations and
storage for the easy case, but more expensive than the SSM methods for the
hard case. These results are consistent with those reported in Hager [2001]
and show that SSM performs extremely well on this class of problems. LSTRS
was the second best of the limited-memory methods. For these problems, we
found that LSTRS was sensitive to the choice of some initial parameters such
as δU and α(0). This behavior, as well as the features of this particular class of
problems, should be further investigated.

5.4 Regularization Problems

The third family of problems comes from the Regularization Tools package by
Hansen [1994]. We chose problem heat of dimension n = 1000. This problem is
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Table III. Average Results for U DU T , n = 1000

METHOD MVP STORAGE ‖(H−λ I )x+g‖
‖g‖

LSTRS 90.2 10 2.95×10−6

SSM 35.2 10 1.35×10−6

SSMd 24.1 10 9.90×10−7

SDP 950.4 10 9.65×10−7

GLTR 36.8 18.9 7.37×10−6

(a) Easy Case

METHOD MVP STORAGE ‖(H−λ I )x+g‖
‖g‖

LSTRS 954.1 24 9.65×10−6

SSM 445.1 24 1.91×10−6

SSMd 130.4 24 9.59×10−7

SDP 1720.8 24 7.86×10−6

GLTR 634.6 317.8 7.64×10−6

(b) Hard Case

a discretized version of the Inverse Heat Equation, which arises, for example,
in the inverse heat conduction problem of determining the temperature on
the surface of a body from transient measurements of the temperature at a
fixed location in the interior [Carasso 1982]. The equation is a Volterra integral
equation:

γ ( y) =
∫ 1

0
K( y , t)φ(t) dt, 0 ≤ y ≤ 1, (11)

where K( y , t) = k( y −t), with k(t) = t−3/2

2κ
√

π
exp(− 1

4κ2t2 ). The parameter κ controls
the degree of ill posedness. We performed experiments with a mildly ill-posed
problem (κ = 5) and a severely ill-posed one (κ = 1).

To compute regularized solutions for problem (11), we solve the following
quadratically constrained least squares problem:

min
1
2

‖Ax − b‖2 s.t. ‖x‖ ≤ �.

The MATLAB routine heat provided the matrix A, the vector b, and X IP , a
discretized version of the analytical solution of the continuous problem. For the
trust-region problem, H = AT A, g = −AT b, and � = ‖X IP‖. Twenty percent
of the singular values of the matrix A were zero to working precision. No noise
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Table IV. Results for the Inverse Heat Equation, n = 1000

METHOD MVP STORAGE ‖(H−λ I )x+g‖
‖g‖

‖x−X IP ‖
‖X IP ‖

LSTRS 265 8 9.12×10−7 6.13×10−4

SSM 700 8 2.99×10−9 2.41×10−4

SSMd 649 8 2.74×10−9 4.57×10−4

SDP 5700 8 2.73×10−7 3.63×10−4

(a) Mildly Ill-Posed Case

METHOD MVP STORAGE ‖(H−λ I )x+g‖
‖g‖

‖x−X IP ‖
‖X IP ‖

LSTRS 552 8 7.05×10−6 5.49×10−2

SSM 512 8 1.81×10−7 3.75×10−2

SSMd 215 8 2.04×10−7 2.25×10−2

SDP 4600 8 2.27×10−4 2.08×10−1

(b) Severely Ill-Posed Case

was added to the vector b since, as discussed in Section 2.2; the absence of noise
yields a more difficult trust-region problem.

Since this problem is implemented as a MATLAB routine, we only tested the
methods for which a MATLAB implementation was available: LSTRS, SSM,
SSMd , and SDP. Several options were tried for all methods. We report the best
results in terms of the relative error in the solution to the trust-region problem
with respect to X IP , the exact solution to the inverse problem. Note that a
bound on the optimality measure was not prescribed for these problems.

The number of vectors was fixed at 8 since this choice produced the best
results for all methods. Other settings were as follows. For LSTRS: for the mildly
ill-posed problem, ε� = 10−3 and lopts.maxeigentol = 0.7; for the severely
ill-posed problem, ε� = 10−2 and lopts.maxeigentol = 0.4. The initial vector
for ARPACK was e/

√
n + 1, where e is the vector of all ones. The parameter

lopts.heuristics was set to 1. Default values were used for the remainder of
the parameters. SSM, SSMd : tol = 10−8 for the mildly ill-posed problem and
10−7 for the severely ill-posed problem, one of the initial vectors in a relevant
Krylov subspace was chosen as the vector of all ones. SDP: the tolerance for
the duality gap was set to 10−7 for the mildly ill-posed problem and 10−10 for the
severely ill-posed problem.

The results are reported in Table IV. In the mildly ill-posed case, all the
computed solutions are indistinguishable from the exact solution to the in-
verse problem. Plots of the solutions in the severely ill-posed case are shown in
Figure 8. The results in Table IV show that LSTRS required the lowest num-
ber of matrix-vector products for the mildly ill-posed problem. For the severely
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Fig. 8. Regularized solutions (dashed) and the exact solution (solid) to the inverse problem for a
severely ill-posed Inverse Heat Equation, n = 1000.

ill-posed problem, the number of matrix-vector products required by LSTRS
was comparable to, or less than, for the unpreconditioned methods, while the
diagonally-preconditioned version of SSM had the best performance on this
problem. In Figure 8, we can observe the oscillatory pattern in the SDP com-
puted approximation for the severely ill-posed problem. The oscillations are
probably due to high-frequency components and indicate that the desired reg-
ularizing effect could not be achieved.

5.5 Discussion

We have compared four methods for the large-scale trust-region subproblem on
a set of different problems. Although more experiments should be performed,
our results seem to indicate that LSTRS is competitive with state-of-the-art
techniques for some classes of trust-region problems, including regularization
problems. The latter was expected since part of the motivation for the develop-
ment of the method came from the regularization of large-scale discrete forms
of ill-posed problems.

The Sequential Subspace Methods performed extremely well on most prob-
lems and we believe that a publicly available, matrix-free and portable, MEX-
file-free, implementation will be of interest. As we pointed out before, the
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Semidefinite Programming approach is still under development and we expect
that some refinement of the codes and of the interesting deflation strategy will
greatly improve the performance of the method. Moreover, the use of a Tcheby-
shev Spectral Transformation might help compute small eigenvalues to higher
accuracy. Our tests with SDP were run in the summer of 2004. The authors have
since reported improvements. Recently, they have also used their approach for
regularization [Grodzevich and Wolkowicz 2007].

Except for regularization problems, the GLTR approach had the best perfor-
mance in terms of the number of matrix-vector products. However, the memory
requirements were larger than for the other methods. The method is a good
choice when storage is not an issue and stand-alone software is desired. To the
best of our knowledge, the method is yet to be tested on regularization problems.

Finally, we remark that both SDP and LSTRS required the solution of a low
number of eigenproblems in all tests. As pointed out in Hager [2001], the pa-
rameterized eigenvalue approach would probably benefit from improvements
in the eigenvalue computation such as the introduction of some sort of precon-
ditioning together with ARPACK, or the use of other techniques such as the
Jacobi-Davidson method [Sleijpen and van der Vorst 1996]. For LSTRS, these
possibilities are yet to be investigated and can be easily incorporated into the
software.

6. APPLICATIONS

A MATLAB 5.3 implementation of LSTRS has been successfully used in sev-
eral large-scale applications. In Rojas [1998] and Rojas and Sorensen [2002],
the code was used in the study of the bathymetry of the Sea of Galilee. This
study required the regularization of a linear inverse interpolation problem of
dimension 40401. The same version of the code was used to compute regularized
solutions for a problem arising in the solution of the visco-acoustic wave equa-
tion in marine oil exploration with field data. The problem was of dimension
121121. The code was also used as an inner solver in the TRUSTμ method for
non-negative image restoration [Rojas and Steihaug 2002], where the typical
images are digital arrays of 256 × 256 pixels which give rise to trust-region
problems of dimension 65536.

The MATLAB 5.3 and the current versions used the same computational
routines. The versions differ only on the interface.

The current code was used as the inner solver in the iterative method MLFIP
[Eldén et al. 2005], which has been applied to the computation of confidence
intervals for regularized solutions of the severely ill-posed sideways inverse
heat equation. These experiments were carried out in MATLAB 6.5.

The performance of LSTRS in the context of trust-region methods for non-
linear programming is yet to be investigated. An important aspect to take into
account is that nearly-exact solutions are acceptable in this context, as long as
they provide a fraction of the Cauchy-point reduction [Conn et al. 2000; Nocedal
and Wright 1999]. We expect that LSTRS can compute such solutions with lower
computational effort than in regularization, where good approximations to the
exact solutions are usually required.

ACM Transactions on Mathematical Software, Vol. 34, No. 2, Article 11, Publication Date: March 2008.



11:26 • M. Rojas et al.

Fig. 9. Restoration of the photograph of an art gallery in Paris. Dimension: 65536.

Next, we present a large-scale example in image restoration. The problem is
that of recovering an image from blurred and noisy data. The problem was con-
structed in the following way. A digital photograph of an art gallery in Paris was
blurred with the routine blur from the Regularization Tools package [Hansen
1994]. Then, a random Gaussian noise vector was added to the blurred image.
The regularization problem was a constrained least squares problem of type (5),
where A was the blurring operator returned by the routine blur, and b̄ was the
blurred and noisy image generated as above and stored columnwise as a one-
dimensional array. The noise level in b̄ was 10−2. The dimension of the problem
is 65536.

The following options were used in LSTRS: epsilon.Delta = 10−2 and ep-

silon.HC = 10−4. The eigensolver was tcheigs lstrs gateway with initial vec-
tor equal to the vectors of all ones. The results are shown in Figure 9. Default
values were used for the remainder of the parameters. LSTRS required 201
matrix-vector products and 7 vectors of storage to compute a quasi-optimal so-
lution with a relative error of 1.06 × 10−1 with respect to the true solution. The
optimality measure was 1.01×10−3. The waves or ripples observed in the LSTRS
restoration are due to the famous Gibbs phenomenon [Parks and Burrus 1987]
and are characteristic of least squares restorations.
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7. CONCLUDING REMARKS

We have presented a MATLAB implementation of the LSTRS method and com-
pared it with state-of-the-art methods for large-scale trust-region subproblems.
Our results seem to indicate that LSTRS is competitive with existing tech-
niques, especially in the presence of singularities such as in regularization
problems.
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MORÉ, J. J. AND SORENSEN, D. C. 1983. Computing a trust region step. SIAM J. Sci. Stat. Com-

put. 4, 3, 553–572.
NATTERER, F. 1986. The Mathematics of Computerized Tomography. John Wiley & Sons, New

York.
NEUMAIER, A. 1998. Solving ill-conditioned and singular linear systems: a tutorial on regulariza-

tion. SIAM Review 40, 3, 636–666.
NOCEDAL, J. AND WRIGHT, S. J. 1999. Numerical Optimization. Springer, New York.
NOLET, G. 1987. Seismic Tomography, with Applications in Global Seismology and Exploration

Geophysics. D. Reidel Publishing Company, Dordrecht.
PARKS, T. W. AND BURRUS, C. S. 1987. Digital Filter Design. John Wiley & Sons, New York.
PARLETT, B. N. 1980. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs NY.
PHAM-DINH, T. AND LE-THI, H. A. 1998. A D.C. optimization algorithm for solving the trust-region

subproblem. SIAM J. Optim. 8, 2, 476–505.
RENDL, F. AND WOLKOWICZ, H. 1997. A semidefinite framework for trust region subproblems with

applications to large scale minimization. Math. Prog. 77, 2, 273–299.
ROJAS, M. 1998. A large-scale trust-region approach to the regularization of discrete ill-posed

problems. Ph.D. dissertation, Department of Computational and Applied Mathematics, Rice Uni-
versity, Houston, Texas, Tech. Rep. TR98-19 (May).

ROJAS, M., SANTOS, S. A., AND SORENSEN, D. C. 2000. A new matrix-free algorithm for the large-scale
trust-region subproblem. SIAM J. Optim. 11, 3, 611–646.

ROJAS, M. AND SORENSEN, D. C. 2002. A trust-region approach to the regularization of large-scale
discrete forms of ill-posed problems. SIAM J. Sci. Comput. 23, 6, 1843–1861.

ROJAS, M. AND STEIHAUG, T. 2002. An interior-point trust-region-based method for large-scale non-
negative regularization. Inverse Problems 18, 5, 1291–1307.

SLEIJPEN, G. L. AND VAN DER VORST, H. A. 1996. A Jacobi-Davidson iteration method for linear
eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425.

SORENSEN, D. C. 1982. Newton’s method with a model trust region modification. SIAM J. Numer.
Anal. 19, 2, 409–426.

SORENSEN, D. C. 1992. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM
J. Matrix Anal. Appl. 13, 1, 357–385.

SORENSEN, D. C. 1997. Minimization of a large-scale quadratic function subject to a spherical
constraint. SIAM J. Optim. 7, 1, 141–161.

STEIHAUG, T. 1983. The conjugate gradient method and trust regions in large scale optimization.
SIAM J. Numer. Anal. 20, 3, 626–637.

SYMES, W. W. 1993. A differential semblance criterion for inversion of multioffset seismic reflec-
tion data. J. Geophys. Res. 98, 2061–2073.

THE MATHWORKS, INC. 2000. MATLAB: The Language of Technical Computing. Using MATLAB
Version 6. Natick, Massachussetts.

TIKHONOV, A. N. 1963. Regularization of incorrectly posed problems. Soviet Math. 4, 1624–1627.
TOINT, P. L. 1981. Towards an efficient sparsity exploiting Newton method for minimization. In

Sparse Matrices and Their Uses, I. Duff, Ed., Academic Press, London, 57–88.

Received August 2003; revised October 2004, October 2006, March 2007; accepted April 2007

ACM Transactions on Mathematical Software, Vol. 34, No. 2, Article 11, Publication Date: March 2008.


