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ACCELERATING THE LSTRS ALGORITHM∗
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Abstract. The LSTRS software for the efficient solution of the large-scale trust-region sub-
problem was proposed in [M. Rojas, S. A. Santos, and D. C. Sorensen, ACM Trans. Math. Software,
34 (2008), article 11]. The LSTRSmethod is based on recasting the problem in terms of a parameter-
dependent eigenvalue problem and adjusting the parameter iteratively. The essential work at each
iteration is the solution of an eigenvalue problem for the smallest eigenvalue of a bordered Hessian
matrix (or two smallest eigenvalues in the potential hard case) and associated eigenvector(s). Using
the nonlinear Arnoldi method to solve the eigenvalue problems makes it possible to recycle most of
the information from previous iterations which can substantially accelerate LSTRS.
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1. Introduction. We consider the trust-region subproblem (TRS) of minimizing
a quadratic function subject to a spherical constraint:

(1.1) min
x

ψ(x) :=
1

2
xTHx+ gTx subject to ‖x‖ ≤ Δ,

where H = HT ∈ R
n×n, g ∈ R

n, and Δ > 0 are given. In (1.1) and throughout the
paper, ‖ · ‖ denotes the Euclidean norm. We assume that H is large and possibly not
explicitly available, so that factoring H is either not possible or too expensive. We
also assume that matrix-vector products (MVPs) with H can be efficiently computed.

Problem (1.1) arises in connection with the trust-region globalization strategy
underlying state-of-the-art trust-region methods in optimization (cf. [6, 25]). The
more expensive computation in trust-region methods is the solution of a TRS per
iteration. In that context, ψ is a local quadratic model of a general nonlinear objective
function f . The region DΔ := {‖x‖ ≤ Δ}, centered at the current iterate, represents
a region where we trust ψ to be a good approximation of f . The radius Δ is updated
at each iteration. A special case of (1.1) is the least squares problem with a norm
constraint, i.e., ψ(x) := ‖Ax− b‖2, which is equivalent to Tikhonov regularization for
discrete forms of ill-posed problems. The radius Δ is fixed in regularization.

Problem (1.1) always has a solution that can lie in the interior or on the boundary
of the trust region. The solution is unique if H is positive definite. The problem may
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have multiple solutions ifH is not positive definite. Necessary and sufficient conditions
for optimality were derived independently in [8, 36] and are presented in Lemma 1.1
from [36].

Lemma 1.1 (see [36]). A feasible vector x∗ is a solution to (1.1) with correspond-
ing Lagrange multiplier λ∗ if and only if x∗ and λ∗ satisfy (H − λ∗I)x∗ = −g with
H − λ∗I positive semidefinite, λ∗ ≤ 0, and λ∗(Δ− ‖x∗‖) = 0.

Lemma 1.1 implies that all solutions of the TRS are of the form x∗ = −(H −
λ∗I)†g + z for some z ∈ N (H − λ∗I), where † denotes the pseudoinverse and N
the null space. If the Hessian matrix H is positive definite and if ‖H−1g‖ < Δ,
problem (1.1) has a unique interior solution x∗ = −H−1g with Lagrange multiplier
λ∗ = 0. In all other cases, there exists a (possibly nonunique) boundary solution
satisfying ‖x∗‖ = Δ and λ∗ ≤ δ1, where δ1 denotes the smallest eigenvalue of H . In
this paper, we consider only the case of boundary solutions.

Nonunique boundary solutions can occur in the so-called hard case. This situation
arises under three conditions: H is not positive definite, Δ ≥ ‖(H − δ1I)

†g‖, and
g ⊥ S1, with S1 = N (H − δ1I). In the hard case, λ∗ = δ1. In practice, we usually
see the near hard case with g nearly orthogonal to S1. The hard case is structural;
i.e., its occurrence depends on the relationship between the problem data H , g, and
Δ and not on the method used to solve it. TRSs where the hard case or near hard
case is present are usually very challenging for numerical methods. In regularization,
very difficult instances of the (near) hard case are common (cf. [30, 33]). When the
hard case is not present, this is usually called the easy or standard case.

The TRS can be efficiently solved with the method proposed by Moré and Sorensen
[23] when it is affordable to compute Cholesky factorizations of matrices of the form
H−λI. The method consists of a Newton iteration for finding a solution of a reformu-
lation of the secular equation (Δ−‖x‖) = 0 for (H −λI)x = −g on an interval where
the function is almost linear. The method computes a solution that approximately
satisfies the optimality conditions in Lemma 1.1.

In many large-scale applications, however, factoring or even forming H − λI is
prohibitive, and matrix-free methods which rely only on MVPs are needed. Methods
for the TRS are usually classified as approximate (those that do not aim to satisfy
the optimality conditions in Lemma 1.1) and exact (those that aim to approximately
satisfy the optimality conditions).

Approximate methods for the large-scale TRS include the truncated conjugate
gradient (CG) approach proposed by Steihaug [39] and Toint [40], the generalized
Lanczos trust-region (GLTR) method of Gould et al. [11], and the sequential subspace
method (SSM) of Hager [12]. The truncated CG approach computes an approximate
solution in a Krylov space and is particularly efficient in the context of trust-region
methods. GLTR is a Lanczos version of the CG approach that includes preconditioning
and a strategy for handling the hard case. A Fortran 90 implementation of GLTR is
available in the Harwell subroutine library HSL [16]. In SSM, a sequence of four-
dimensional subspaces Vk acts as an additional constraint x ∈ Vk for (1.1) (with the
inequality replaced by equality, i.e., ‖x‖ = Δ). The ingredients of each subspace
are the current iterate xk, the gradient of ψ(x) at xk, an estimate of an eigenvector
corresponding to the smallest eigenvalue of H , and the first iterate generated by the
sequential quadratic programming (SQP) method applied to problem (1.1). The first
three vectors are sufficient for linear global convergence, as was proven by Hager and
Park in [13]. By inserting the SQP iterate into the search space, the convergence is
locally quadratic. The main cost in SSM is the approximate solution of a sequence
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of linear systems. In the current implementation, these linear systems are treated
independently by variants of MINRES, i.e., there is no reuse of information from
previous iterations except for the current iterate xk itself.

Exact methods for the large-scale TRS include the method of Golub and von
Matt [10], the semidefinite programming approach (SDP) of Rendl and Wolkowicz
[28] and its extension by Fortin and Wolkowicz [7], the method of Sorensen [38], and
LSTRS of Rojas, Santos, and Sorensen [31, 32]. The method of Golub and von Matt
is based on Lanczos bidiagonalization, matrix moments, and Gauss quadrature and is
derived under assumptions that exclude the occurrence of the hard case. The method
is matrix-free but not limited-memory. The SDP, Sorensen, and LSTRS methods
are all limited-memory techniques based on a reformulation of (1.1) as the following
parameter-dependent eigenvalue problem:

(1.2) Bαy :=

(
α gT

g H

)(
1
x

)
= λ

(
1
x

)
=: λy,

where the real parameter α has to be adjusted such that the solution of (1.1) can
be read off an (appropriately normalized) eigenvector corresponding to the smallest
eigenvalue of Bα.

The SDP approach formulates (1.1) as a semidefinite programming problem. It
uses a primal-dual approach and the fact that strong duality holds to design an iter-
ation for constructing the sequence {αk}. In this algorithm, the eigenvalue problems
can become increasingly difficult if the smallest eigenvalue is not simple. An extension
that can handle the hard case using an eigenvalue shift and deflation was proposed in
Fortin and Wolkowicz [7]. Sorensen’s method uses the eigenpair (λ(αk), y(αk)) cor-
responding to the smallest eigenvalue of Bαk

to construct a rational interpolant for
a secular function. It then uses the interpolant to obtain αk+1. The basic iteration
is superlinearly convergent except in the hard case, when it must switch to a linearly
convergent scheme. LSTRS uses one or possibly two eigenpairs of Bα in a rational
interpolation scheme. The method is a unified iteration that converges superlinearly
in all cases. In the MATLAB implementation [32] of LSTRS the main eigensolver is
the implicitly restarted Lanczos method (IRLM) [37], implemented in ARPACK [22]
and included in MATLAB as function eigs.

The acceleration strategy proposed in this paper is based on the fact that as
the sequence of parameters {αk} produced by the SDP, Sorensen, or LSTRS method
converges, the matrices Bαk

converge as well and the eigenvalue problems do not
vary significantly. The situation in which a sequence of slightly varying or convergent
parameter-dependent problems must be solved arises in various areas of numerical
computing, and it suggests trying to improve convergence when solving the current
problem by recycling as much information as possible from previous steps. Some ex-
amples of heavy reuse include homotopy methods for bifurcation problems [1] or for
tracking invariant subspaces of dynamical systems [3], generalized Krylov subspaces
in projection methods for linear [43, 44] and quadratic eigenvalue problems [15], re-
cycling of Krylov spaces for sequences of linear systems [26, 42], for Newton–Krylov
approaches for nonlinear systems of equations [29], and for Gauss–Newton methods
for nonlinear least squares problems in optical tomography [17].

In LSTRS (and SDP), information can be reused when solving the eigenvalue
problems. For example, if the eigensolver is the IRLM, using the first Lanczos vector
from the IRLM call in the previous LSTRS step as an initial vector for the IRLM call
in the current LSTRS step considerably accelerates convergence with respect to using
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a random initial vector for the IRLM at every LSTRS step. This seems to indicate
that we may possibly obtain greater gains in performance if we could reuse more
information from previous steps. Thus, eigensolvers that allow the recycling of more
than one vector are attractive in this context.

Due to the simple dependence of the eigenvalue problem (1.2) on the parameter α,
it is obvious that iterative projection methods that allow thick starts, i.e., starts with
an initial search space of arbitrary size, are perfectly suited for reusing information
when solving those problems. An iterative projection method determines an approxi-
mation to an eigenpair from the projection V TBαk

V z = λz of the eigenproblem onto
a subspace V of small dimension, expanding V if the approximation does not meet
a specified accuracy. Methods of this type include the nonlinear Arnoldi method
(NLArn) for general nonlinear eigenvalue problems [41] and the Jacobi–Davidson
method [35]. Both methods construct search spaces V which do not have a spe-
cial structure (such as a basis of a Krylov space) and therefore can be started with
any full-rank matrix V ∈ R

n+1×k.
In this paper, we discuss a modification of the LSTRS algorithm that uses NLArn

for solving the eigenvalue problems. Numerical results demonstrate that LSTRS can
be considerably accelerated by using NLArn as eigensolver.

Note also that the SDP algorithms [7, 28] can be accelerated in exactly the same
way as presented here for LSTRS. This is illustrated with preliminary numerical results
in section 4.2. Similarly, SSM [12] could possibly be accelerated by combining it with
the recycling approach for MINRES in [42] when solving the sequence of linear systems
from SQP. Exploring this possibility for SSM is beyond the scope of this work.

This paper is organized as follows. Section 2 contains a brief description of the
LSTRS algorithm. In section 3, we describe NLArn and how it is combined with the
LSTRS algorithm. Section 4 demonstrates with several examples the improvement
obtained in LSTRS performance by recycling prior information. Concluding remarks
are presented in section 5.

2. The LSTRS method. In this section, we briefly describe the LSTRS method.
Its theoretical foundation and a discussion of its convergence properties are contained
in [30, 31, 33]. A detailed description of the LSTRS algorithm with special emphasis
on computational aspects can be found in [32].

Lemma 1.1 reveals the relationship between the TRS and the eigenvalue prob-
lem (1.2). For a real α, let λ1(α) be the smallest eigenvalue of Bα, and let y be a
corresponding eigenvector.

We first consider the case when the first component of y is different from 0 and
thus can be scaled to be equal to one. For such an eigenvector y = (1, xT )T we have

(2.1) α− λ1(α) = −gTx
and

(2.2) (H − λ1(α)I)x = −g.
Equation (2.2) demonstrates that, for any value of α, two of the conditions of Lem-
ma 1.1 are automatically satisfied by λ1(α) and y: (H − λ1(α)I)x = −g, and since
the eigenvalues of H interlace those of Bα, H −λ1(α)I must be positive semidefinite.
Therefore, the parameter α must simply be adjusted to satisfy the two remaining
conditions, λ1(α) ≤ 0 and λ1(α)(Δ − ‖x‖) = 0.

Using (2.1), α can be updated according to

α+ = λ1(α)− gTx = λ1(α) + gT (H − λ1(α)I)
†g =: λ1(α) + φ(λ1(α)),
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where φ(λ) = gT (H−λI)†g is a rational function with possible poles at the (distinct)
eigenvalues of H and, therefore, too expensive to evaluate. LSTRS employs a rational
interpolant φ̂(λ) of φ(λ) based on the Hermitian data φ(λ) = −gTx and φ′(λ) =

gT ((H − λI)†)2g = xTx. The new value α+ is then computed as α+ = λ̂ + φ̂(λ̂),

where λ̂ is determined such that φ̂′(λ̂) = Δ2.
The previous approach assumes that there exists an eigenvector corresponding

to the smallest eigenvalue of Bα whose first component can be scaled to one. The
strategy breaks down if all eigenvectors associated with λ1(α) have first component
zero or very small. This can happen only when g is orthogonal (or nearly orthogonal)
to S1, the eigenspace of H corresponding to δ1. As discussed in section 1, when g ⊥ S1

there is the possibility for the occurrence of the hard case (cf. [23]), and therefore this
situation is called a potential hard case in [31].

It was shown in [31] that in a potential hard case, for all values of α greater than
a certain critical α̃, all eigenvectors associated with λ1(α) have first component zero.
It was also shown that for any α there is a well-defined eigenvector of Bα depending
continuously on α that can be safely normalized to have first component one. If
either g ⊥ S1 and α ≤ α̃ or g �⊥ S1, then this eigenvector corresponds to the smallest
eigenvalue λ1(α). If g ⊥ S1 and α exceeds α̃ by a small amount, it is associated with
the second smallest eigenvalue. In the potential hard case, it is this eigenpair that is
used in LSTRS to construct the rational Hermitian interpolation φ̂ mentioned above.

We have sketched the essential ingredients of the LSTRS method showing that
the main cost per iteration is the solution of the eigenvalue problem (1.2) with fixed
α for the smallest eigenvalue, or the two smallest eigenvalues, in the potential hard

Input: H ∈ R
n×n, symmetric; g ∈ R

n; Δ > 0; tolerances (εΔ, εHC , εInt, εν , εα).
Output: x∗, solution to TRS and Lagrange multiplier λ∗.

1: Initialization
2: Compute δU ≥ δ1, initialize αU and α0, set k = 0 % αU ≥ αk

3: Compute eigenpairs {λ1(α0), (ν1, u
T
1 )

T }, and {λi(α0), (ν2, u
T
2 )

T } of Bα0

4: Initialize αL % αL ≤ αk

5: repeat
6: Adjust αk (might need to compute eigenpairs)

7: Update δU = min
{
δU ,

uT
1 Au1

uT
1 u1

}
8: if ‖g‖|ν1| > εν

√
1− ν21 , then

9: Set λk = λ1(αk), xk = u1

ν1
and update αL or αU

10: else

11: Set λk = λi(αk), xk = u2

ν2
, and αU = αk

12: end if
13: Compute αk+1 by 1-point (k = 0) or 2-point interpolation scheme
14: Safeguard αk+1 and set k = k + 1
15: Compute eigenpairs {λ1(αk), (ν1, u

T
1 )

T } and {λi(αk), (ν2, u
T
2 )

T } of Bαk

16: until convergence

Fig. 2.1. The LSTRS method.
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case, and corresponding eigenvectors. LSTRS uses a safeguarding strategy to ensure
global convergence of {αk} to its optimal value, and it employs the pairs {λ1(αk), xk}
and {λ1(αk−1), xk−1} from the last two iterations when constructing the rational

interpolant φ̂ to generate the next parameter αk+1 = λ̂+ φ̂(λ̂). It was shown in [31,
Theorem 5.1] that the resulting algorithm is superlinearly convergent. The method is
presented in Figure 2.1. More details can be found in [31, 32].

3. Nonlinear Arnoldi. The IRLM is the method of choice for solving a large-
scale symmetric eigenvalue problem for the smallest or two smallest eigenvalues and
corresponding eigenvectors. However, in LSTRS a sequence of eigenproblems depend-
ing continuously on a convergent parameter has to be solved, and one should take
advantage of information gained in previous iterations. The only freedom in Krylov
subspace methods such as the IRLM is the choice of the initial vector, and conse-
quently in the original LSTRS method the kth iteration is initialized by the first
Lanczos vector of the (k − 1)th iteration.

Iterative projection methods, on the other hand, are eigensolvers that allow for
a thick start and therefore are able to use all information from previous iterations.
Here the eigenvalue problem (Bα − λI)y = 0 under consideration is projected onto a
subspace V = span(V ) of small dimension. If the Ritz pair (λ, V z) of the projected
problem V T (Bα−λI)V z = 0 corresponding to the smallest eigenvalue (or the second
smallest in the hard case) does not meet a prescribed accuracy requirement, then the
subspace is expanded by a direction v which has a high approximation potential for
the wanted eigenpair. As mentioned before, methods of this type are the Jacobi–
Davidson method introduced by Sleijpen and van der Vorst [35] and NLArn, which
was introduced in [41] for solving general nonlinear eigenvalue problems. In Jacobi–
Davidson, V is expanded in such a way that the direction of inverse iteration at
the current approximation is (approximately) contained in the next search space. In
NLArn, V is expanded by an approximate Cayley transformation v := PC · (Bα −
λI)V z ≈ (Bα − μI)−1(Bα − λI)V z with a preconditioner PC which is kept fixed
for several iterations, i.e., for several values of λ. In the latter case, the expanded
space contains an approximation to the direction of residual inverse iteration [24]. It
is obvious that due to the particularly simple dependence of Bα on the parameter α,
the projected problem comes with no additional cost when changing the parameter α
and reusing the search space.

Here we consider the use of NLArn to accelerate LSTRS. At the end of this section,
we comment on the possibility of using Jacobi–Davidson instead.

Although NLArn is usually more expensive than the IRLM when solving a single
eigenvalue problem, the heavy reuse of information gained from previous steps leads to
a significant speedup in LSTRS; i.e., all necessary information for solving Bαk+1

y = λy
is already contained in the subspace that has been built for solving Bαk

y = λy.
A similar technique has been successfully applied in regularized total least squares

(RTLS) [18, 20] for accelerating the RTLS solver [34] which is based on a sequence of
quadratic eigenvalue problems. Another method for RTLS presented in [27] which is
based on a sequence of linear eigenproblems has also been substantially accelerated
in [19, 21].

Here, we have used the NLArn algorithm in Figure 3.1 in LSTRS for solving

Tk(λ)y = (B0 + αkN − λI)y =

((
0 gT

g H

)
+ αke1e

T
1 − λI

)
y = 0.(3.1)

NLArn allows thick starts in line 1; i.e., when solving Tk(λ)y = 0 in step k of the
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Input: Tk as in (3.1), (H, g, αk from LSTRS), ε ∈ (0, 1).
Output: {μ, u}, an eigenpair corresponding to the smallest eigenvalue of Tk

1: Start with initial basis V , V TV = I

2: For fixed αk find smallest eigenvalue μ of V TTk(μ)V z = 0
and corresponding eigenvector z

3: Determine positive definite preconditioner PC ≈ T−1
k (μ)

4: Set u = V z, r = Tk(μ)u

5: while ‖r‖/‖u‖ > ε

6: v = PCr

7: v = v − V V T v

8: ṽ = v/‖v‖, V = [V, ṽ]

9: Find smallest eigenvalue μ of V TTk(μ)V z
and corresponding eigenvector z

10: Set u = V z, r = Tk(μ)u

11: end while

Fig. 3.1. NLArn.

LSTRS method, the algorithm in Figure 3.1 is started with the orthonormal basis V
that was used in the preceding iteration when determining the solution yk−1 = V z of
V TTk−1(λ)V z = 0. So all search spaces of previous problems are kept.

The projected problem in the kth iteration

(3.2) V TTk(μ)V z =
(
V TB0V + αk(e

T
1 V )T (eT1 V )− μI

)
z = 0

can be constructed directly from the previous step since the matrices V , V TB0V , and
v1 = V (1, :) are known. Within the iteration, these matrices are obtained on-the-fly
by appending one column to V and one column and row to V TB0V , respectively.
This update relies on MVPs only and does not require the matrix B0 explicitly.

If v = 0 after Step 7 is completed, the iteration must halt. However, this is a
fortunate event as it would imply r = 0. This is because v = 0 would imply V s = PCr
for some s. Hence, rTPCr = rTV s = 0 by virtue of Step 9, which in turn implies
r = 0 since PC is positive definite. Therefore, the test at Step 5 would have already
halted the iteration with a numerical solution.

The LSTRS method combined with NLArn can be executed with low and fixed
storage requirements. For memory allocation purposes, a maximal dimension p 	 n
of the search space span(V ) can be set in advance, and if in the course of the LSTRS

method the dimension of V reaches p, then NLArn can be restarted with a subspace
spanned by a small number q of eigenvectors corresponding to the smallest eigenvalues
of Tk(λ). Since the value of p is usually modest, orthogonality of the basis of V is
maintained and reorthogonalization is not required.

LSTRS requires an eigenvector associated with the smallest eigenvalue of Tk(λ).
An additional eigenvector is needed only if the first eigenvector cannot be safely
scaled to have one as a first component. The implicitly restarted Lanczos method
approximates eigenvectors corresponding to extreme eigenvalues simultaneously, and
therefore in the original version of LSTRS, two eigenvectors are returned by eigs at



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

182 J. LAMPE, M. ROJAS, D. C. SORENSEN, AND H. VOSS

every iteration. NLArn aims at one eigenpair at a time. In the NLArn algorithm
in Figure 3.1, this is the smallest one. If a second eigenvector is needed, the search
space V can be further extended, now aiming at the second smallest eigenvalue μ in
statement 9.

A few further comments are in order:
— To solve the very first eigenproblem with NLArn it is recommended to put

some useful information in the starting basis V . An orthonormal basis of the
Krylov subspace K�(B0, e1) with 	 ≈ 5 is a suitable choice.

— The projected eigenproblems in lines 2 and 9 can be solved by a dense solver
for all eigenvalues; in the numerical experiments MATLAB’s eig has been
used.

— For general nonlinear eigenproblems, NLArn usually requires a precondi-
tioner. In this application, PC would need to be positive definite if it is
to approximate the inverse of a positive definite matrix, PC ≈ T−1

k (μ). For
the test examples in section 4 the method always worked fine without it, i.e.,
PC = I.

— For a least squares problem with norm constraint, the explicit form of the
matrix H = ATA is not needed to determine the projected matrix V TB0V ,
since this can be updated according to V TB0V = ([−b, A]V )T ([−b, A]V ) −
‖b‖2vT1 v1 (recalling that v1 is the first row of V ).

The advantage of using NLArn in LSTRS over the implicitly restarted Lanczos
method is due to the fact that thick starts are possible. This holds true also for other
iterative projection approaches like the Jacobi–Davidson method, where the search
space span(V ) is expanded by an approximate solution of the correction equation

(3.3)

(
I − uuT

uTu

)
Tk(μ)

(
I − uuT

uTu

)
v = Tk(μ)u, v ⊥ u.

However, solving (3.3) will usually be much more expensive than the nonlinear Arnoldi
expansion v = PC · Tk(μ)u, where only two (or even one in case PC = I) MVPs are
needed at every iteration. For really huge problems where storage is critical and only
coarse preconditioners are available, using Jacobi–Davidson could be beneficial. In
that case, the dimension of the search space built by NLArn can become quite large,
but it can be kept much smaller in Jacobi–Davidson if the correction equation (3.3) is
solved very accurately, which can be done by a Krylov solver with short recurrence.

4. Numerical results. In order to evaluate the performance of LSTRS using
NLArn as eigensolver, we used a modified version of LSTRS that allows the compu-
tation of one eigenpair at a time. If a second eigenpair is needed, the eigensolver is
called again to compute it.

Numerical experiments were performed on three different problem classes, namely,
regularization problems, shifted Laplacian problems, and problems with H of the form
H = UDUT , with D a diagonal matrix and U a Householder matrix.

In section 4.1, we compare the performance of LSTRS on regularization problems
using the IRLM and NLArn as eigensolvers. In section 4.2, we compare the performance
of several methods for the large-scale TRS on the shifted Laplacian, UDUT , and two
regularization problems with different levels of ill-posedness. Here we allow only for
methods for the general TRS, but we do not incorporate methods which apply solely
to regularized least squares problems like the one in [4]. In section 4.3, we present
results for LSTRS on a large-scale image restoration problem.

In all experiments, we chose the parameter Δ such that the solution of problem



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATING THE LSTRS ALGORITHM 183

(1.1) is located on the boundary of the feasible set ‖x‖ = Δ. Note that for TRS arising
in trust-region methods, Δ is determined in the outer iteration. In regularization, the
optimal Δ either is known from the physics of the problem or has to be determined,
for example, by means of the L-curve. This could be another source of recycling of
information, since a few TRSs have to be solved in order to determine the value of Δ.

As in [32], all experiments were performed using the idea of meeting certain
targets. The results shown correspond to the input settings that yielded the best per-
formance for each method; i.e., with those settings, the methods met the target at the
lowest cost in terms of storage and MVPs. The target for each experiment is described
in the corresponding section. The settings used are described in Appendix A. The
experiments were carried out in MATLAB R2008b on a MacBookPro with a 2.66 GHz
processor and 4 GB of RAM, running the Mac OS X version 10.6.4 (Snow Leopard)
operating system. The floating-point arithmetic was IEEE standard double precision
with machine precision 2−52 ≈ 2.2204× 10−16.

4.1. Regularization problems. The regularization test problems were taken
from the Regularization Tools package [14]. Most of the problems in that package are
discretizations of Fredholm integral equations of the first kind, which are typically
very ill-posed.

Regularized solutions were computed by solving the following quadratically con-
strained least squares problem:

(4.1) min
x

1

2
‖Ax− b‖2 subject to ‖x‖ ≤ Δ,

where A ∈ R
m×n, m ≥ n, and b ∈ R

m. The matrix A is a discretized operator from
an ill-posed problem and is typically very ill conditioned. Problem (4.1) is equivalent
to a trust-region problem of type (1.1) with H = ATA and g = −AT b. Hence the
matrix H is at least positive semidefinite or, in the full-rank case, positive definite.
No noise was added to the vector b since the absence of noise yields more difficult
trust-region problems for which the potential (near) hard case is present in a multiple
instance (cf. [32, 33]).

In all tests, m = n = 1000 and Δ = ‖xtrue‖, where xtrue was the true solution to
the inverse problem provided in [14]. Note that although in practice the exact value
‖xtrue‖ is usually not known, good estimates for Δ are available in many important
applications (cf. [2, 9]). We compared the following eigensolvers: IRLM+C (the IRLM

combined with the Chebyshev spectral transformation described in [32, 33]), IRLM+H

(the IRLM combined with the heuristics described in [32]), and NLArn.
As in [32], the target in these experiments was a relative error in the approximate

solution x with respect to xtrue of the same order as in the IRLM+H solution. Thus,
the results for IRLM+H were obtained first. The settings for LSTRS combined with
IRLM+H were chosen ad hoc, as they often are in practice, after several trial runs.
Most of the choices were the same as in [32]. The parameters for IRLM+C and NLArn

were then adjusted to meet the target. All settings can be found in section A.1.
The results are presented in Table 4.1. For each eigensolver, we report the number

of MVPs, the number of vectors (VEC), the optimality measure ‖(H−λI)x+g‖
‖g‖ , and the

relative error ‖x−xtrue‖
‖xtrue‖ . The results are presented graphically in Figures 4.1 and 4.2

(where problem names have been abbreviated). We can observe in Figure 4.1 the
tremendous improvement obtained in LSTRS performance when NLArn was used as
the eigensolver. When compared with IRLM+H, we observe that for problem heat,
mild, savings of approximately 35% in MVP were obtained, and for deriv2, ex.2,
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the savings are approximately 42%. For the rest of the problems, the savings in MVP
were 60% or higher. When compared with IRLM+C, savings of at least 80% in MVP
were obtained. Moreover, for all test problems except heat, mild, NLArn required
the same number or fewer numbers of vectors than both variants of the IRLM.

Table 4.1

LSTRS on regularization problems, m = n = 1000.

Problem Eigensolver MVP VEC ‖(H−λI)x+g‖
‖g‖

‖x−xtrue‖
‖xtrue‖

baart IRLM+C 600 10 4.23e-15 8.63e-02
IRLM+H 84 10 1.02e-15 8.63e-02
NLArn 18 10 7.95e-14 8.63e-02

deriv2, ex.1 IRLM+C 2605 8 2.52e-02 5.66e-01
IRLM+H 555 8 2.52e-02 5.67e-01
NLArn 217 7 2.50e-02 5.84e-01

deriv2, ex.2 IRLM+C 3609 13 7.00e-03 4.91e-01
IRLM+H 256 13 1.65e-01 6.32e-01
NLArn 148 5 6.95e-03 3.42e-01

foxgood IRLM+C 370 10 3.74e-15 3.71e-02
IRLM+H 114 10 2.09e-14 3.71e-02
NLArn 18 10 2.96e-11 3.71e-02

heat, mild IRLM+C 313 8 1.52e-04 2.50e-03
IRLM+H 105 8 1.48e-04 3.60e-03
NLArn 68 10 5.42e-05 5.03e-03

heat, severe IRLM+C 1029 8 7.29e-05 7.05e-02
IRLM+H 551 8 7.09e-06 5.48e-02
NLArn 112 8 5.37e-05 8.05e-02

i laplace, ex.1 IRLM+C 1079 10 4.20e-06 1.99e-01
IRLM+H 279 10 1.53e-05 2.33e-01
NLArn 137 9 7.96e-06 3.28e-01

i laplace, ex.3 IRLM+C 970 10 6.77e-07 4.26e-02
IRLM+H 198 10 6.39e-07 4.36e-02
NLArn 52 10 5.55e-06 6.69e-02

phillips IRLM+C 493 10 6.85e-05 9.98e-03
IRLM+H 333 10 4.01e-09 8.97e-03
NLArn 92 10 5.30e-06 9.88e-03

shaw IRLM+C 551 10 1.11e-14 5.85e-02
IRLM+H 135 10 1.09e-13 5.85e-02
NLArn 36 10 2.67e-10 5.86e-02

4.2. Comparison of TRS solvers. In this section, we compare LSTRS with
other methods for the large-scale trust-region subproblem. The methods used for
comparisons were the sequential subspace method (SSM) of Hager [12], the semidef-
inite programming approach (SDP) of Fortin and Wolkowicz [7], and the generalized
Lanczos trust-region (GLTR) method of Gould et al. [11]. Note that only LSTRS,
SSM, and SDP are limited-memory methods. For SSM, results are reported only for
the two matrix-free variants SSM and SSMd. Two eigensolvers (IRLM and NLArn)
were used in combination with LSTRS and SDP.

The results for all methods, except those using NLArn, were taken from [32]
since there have been no changes in the GLTR, SSM, and SDP methods since those
experiments were performed. In all experiments, we use the same targets as in [32].

We used MATLAB implementations of LSTRS, SSM, and SDP and a Fortran 90
implementation of GLTR. It is important to note that the four codes are at a different
stage of development. The GLTR code is the routine HSL VF05 of the HSL library
[16]. The SSM and SDP codes are research implementations provided by their authors
for the purpose of these comparisons. In particular, the SDP code is still at a very early
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(a) (b)

Fig. 4.1. (a) Number of MVPs; (b) number of vectors (VEC) required by IRLM+C (black),
IRLM+H (gray), and NLArn (white). LSTRS on regularization problems, m = n = 1000.

(a) (b)

Fig. 4.2. (a) NLArn MVP as % of IRLM+C MVP (black) and IRLM+H (white); (b) NLArn
VEC as % of IRLM+C VEC (black) and IRLM+H VEC (white). LSTRS on regularization
problems, m = n = 1000.

stage of development. The double precision version of HSL VF05 was used, whereas
the results for the MATLAB codes were obtained under MATLAB 6.0. We were able
to reproduce the results reported in [32] for LSTRS and SDP under MATLAB R2008b.
SSM uses mexfiles that do not run under this new version of MATLAB. The results
for LSTRS+NLArn and SDP+NLArn were obtained under MATLAB R2008b.

4.2.1. Laplacian problems. Here H = L − 5I, with L the standard two-
dimensional discrete Laplacian on the unit square based upon a 5-point stencil with
equally spaced mesh points. The dimension of the problem was n = 1024. The trust-
region radius was fixed at Δ = 100. Ten related TRSs were solved differing only in the
vector g which was randomly generated with entries uniformly distributed on (0, 1).
Problems with and without a hard case were studied. To generate the hard case, the
vector g was orthogonalized against the eigenvector q1 corresponding to the smallest
eigenvalue of H . A noise vector of norm 10−8 was then added to g. Note that for
Δ = 100, we have ‖(H − δ1I)

†g‖ < Δ, which is a necessary condition for the hard
case.

The target in this experiment was a prescribed level for the optimality measure
‖(H−λI)x+g‖

‖g‖ . Here, ‖(H−λI)x+g‖
‖g‖ ≤ 10−5 was required. The parameters for GLTR,

LSTRS+IRLM, SSM, and SDP were as in [32]. All settings are described in sec-
tion A.2.1.

Average results for the ten problems are shown in Table 4.2, where we report
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the number of MVPs, the number of vectors (VECs), and the optimality measure

(target) ‖(H−λI)x+g‖
‖g‖ . We can observe that in the standard case the performance of

LSTRS+NLArn is closer to SSM’s (approximately 15% more MVPs as opposed to 52%
more MVPs required by LSTRS+IRLM). In the hard case, LSTRS+NLArn required
50% more vectors than the other methods and the lowest number of MVPs of all
(approximately 20% fewer MVPs than LSTRS+IRLM, the second best of all methods
for these problems).

Preliminary experiments with SDP+NLArn indicate that NLArn can greatly im-
prove SDP’s performance. In the standard case, only 14% of the MVPs required by
SDP+IRLM were needed by SDP+NLArn. Although the number of vectors was larger,
SDP+NLArn could reach the target, while SDP+IRLM could not. In the hard case,
SDP+NLArn was not able to solve any of the ten problems. However, as we mentioned
before, SDP is not a mature code at this moment. We expect that an improved SDP

code can take full advantage of efficient eigenvalue calculations with NLArn.

An interesting quantity to look at in the hard case is ρ = |λ∗−δ1|
|δ1| since, as discussed

in section 1, λ∗ must equal δ1 in this case (in exact arithmetic). The average value
of ρ was 1.45e-03 for LSTRS+IRLM and 6.72e-11 for LSTRS+NLArn. This shows
that using NLArn yields a very accurate λ∗ in the hard case for these problems.

4.2.2. UDUT family. In these problems, the matrix H ∈ R
1000×1000 was of

the form H = UDUT with D a diagonal matrix with elements d1, . . . , dn, and U =
I − 2uuT with uTu = 1. The elements of D were randomly generated with a uniform
distribution on (−5, 5), then sorted in nondecreasing order and d1 was set to −5.
Both vectors u and g were randomly generated with entries selected from a uniform
distribution on (−0.5, 0.5). The vector u was normalized to have unit length.

The eigenvectors of H are of the form qi = ei − 2uui, i = 1, . . . , n, with ei the
ith canonical vector and ui the ith component of the vector u. The vector g was
orthogonalized against q1 = e1 − 2uu1, and a noise vector was added to g. Finally, g
was normalized to have unit norm. The noise vectors had norms 10−2 and 10−8 for the
standard and hard cases, respectively. To construct suitable examples for both cases
we computed xmin = −(H − d1I)

†g and Δmin = ‖xmin‖ and then set Δ = 0.1Δmin

in the standard case and Δ = 5Δmin in the hard case. One fact makes this problem
extremely difficult to solve: typically, xmin is almost orthogonal to q1 but has huge
components γi in the directions qi, i = 2, 3, 4, 5 and only very small components in
eigendirections corresponding to large eigenvalues of H . To construct an appropriate
solution in the hard case, the vectors

(
0
q1

)
and

(
1

xmin

)
≈

(
1∑5

i=2 γiqi

)

have to be properly separated. This is a highly demanding task since the vectors qi
correspond to the same cluster around δ1 = −5.

The target in this experiment was ‖(H−λI)x+g‖
‖g‖ ≤ 10−5. The parameters for

GLTR, LSTRS+IRLM, SSM, and SDP were as in [32]. All settings are described in
section A.2.2.

Average results for ten related problems, differing only in the vector g, are shown
in Table 4.3, where we report number of MVPs, the number of vectors (VECs), and

the optimality measure (target) ‖(H−λI)x+g‖
‖g‖ .

We observe that in the standard case the performance of LSTRS+NLArn is es-
sentially the same as SSM’s and closer to SSMd’s than LSTRS+IRLM’s (approxi-
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Table 4.2

Average results for the two-dimensional Laplacian, n = 1024.

Method MVP VEC
‖(H−λI)x+g‖

‖g‖

LSTRS+IRLM 127.1 10.0 2.32e-06

LSTRS+NLArn 79.9 10.0 1.78e-06

SSM 67.3 10.0 9.53e-07

SSMd 67.3 10.0 9.53e-07

SDP+IRLM 595.0 10.0 3.17e-05

SDP+NLArn 89.0 17.0 2.91e-06

GLTR 81.6 41.3 8.56e-06

Standard case

Method MVP VEC
‖(H−λI)x+g‖

‖g‖

LSTRS+IRLM 252.6 10.0 6.91e-06

LSTRS+NLArn 201.4 15.0 7.28e-06

SSM 377.9 10.0 1.42e-06

SSMd 377.9 10.0 1.42e-06

SDP+IRLM 2023.8 10.0 5.76e-02

SDP+NLArn * * *

GLTR 151.8 76.4 8.37e-06

Hard case

mately 48% more MVPs as opposed to almost four times more MVPs required by
LSTRS+IRLM). In the hard case, LSTRS+NLArn required 35% fewer MVPs than
SSM and only 30% of the total number of MVPs required by LSTRS+IRLM. The
preconditioned variant of SSM (SSMd) outperformed all methods for these problems.
LSTRS+NLArn required the lowest number of MVPs of all unpreconditioned methods
in all cases.

Regarding SDP+NLArn, we see again savings in the number of MVPs for both
cases. In the standard case, savings of 43% in MVPs were obtained with 20% more
vectors. In the hard case, savings of 85% in MVPs were obtained with approximately
3.5 times the number of vectors. As we mentioned before, our experiments with SDP

are preliminary. Other settings could possibly yield large savings with fewer vectors.
A careful numerical investigation of the SDP+NLArn performance is beyond the scope
of this paper.

We look again at the quantity ρ = |λ∗−δ1|
|δ1| which was 2.74e-04 for LSTRS+IRLM

and 5.02e-06 for LSTRS+NLArn. This shows that NLArn computes λ∗ more accu-
rately than LSTRS+IRLM in the hard case for these problems.
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Table 4.3

Average results for UDUT , n = 1000.

Method MVP VEC
‖(H−λI)x+g‖

‖g‖

LSTRS+IRLM 90.2 10.0 2.95e-06

LSTRS+NLArn 35.9 9.0 9.62e-06

SSM 35.2 10.0 1.35e-06

SSMd 24.1 10.0 9.90e-07

SDP+IRLM 950.4 10.0 9.65e-07

SDP+NLArn 541.2 12.0 1.05e-06

GLTR 36.8 18.9 7.37e-06

Standard case

Method MVP VEC
‖(H−λI)x+g‖

‖g‖

LSTRS+IRLM 954.1 24.0 9.65e-06

LSTRS+NLArn 247.1 60.0 2.84e-06

SSM 445.1 24.0 1.91e-06

SSMd 130.4 24.0 9.59e-07

SDP+IRLM 1720.8 24.0 7.86e-06

SDP+NLArn 266.4 80.0 3.85e-07

GLTR 634.6 317.8 7.64e-06

Hard case

4.2.3. Inverse heat equation. In order to compare the methods on regular-
ization problems, we chose problem heat from [14]. The problem is a discretized
version of the inverse heat equation, which arises, for example, in the inverse heat
conduction problem of determining the temperature on the surface of a body from
transient measurements of the temperature at a fixed location in the interior [5]. The
equation is a Volterra integral equation

γ(y) =

∫ y

0

K(y, t)φ(t)dt, 0 ≤ y ≤ 1,(4.2)

where K(y, t) = k(y− t), with k(t) = t−3/2

2κ
√
π
exp

(− 1
4κ2t

)
. The parameter κ controls the

degree of ill-posedness. We performed experiments with a mildly ill-posed problem
(κ = 5) and a severely ill-posed one (κ = 1). The dimension was n = 1000.

To compute regularized solutions, we solve the constrained least squares prob-
lem (4.1) as in section 4.1. As before, Regularization Tools provided the matrix A,
the vector b, as well as xtrue, a discretized version of the analytical solution of the
continuous problem. In this case, 20% of the singular values of the matrix A were
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Table 4.4

Problems: heat, mild and heat, severe, m = n = 1000.

Method MVP VEC
‖(H−λI)x+g‖

‖g‖
‖x−xtrue‖
‖xtrue‖

LSTRS+IRLM 265 8 9.12e-07 6.13e-04

LSTRS+NLArn 194 12 6.71e-06 9.41e-04

SSM 700 8 2.99e-09 2.41e-04

SSMd 649 8 2.74e-09 4.57e-04

SDP+IRLM 5700 8 2.73e-07 3.63e-04

SDP+NLArn 1208 8 7.07e-05 2.52e-03

Mildly ill-posed case

Method MVP VEC
‖(H−λI)x+g‖

‖g‖
‖x−xtrue‖
‖xtrue‖

LSTRS+IRLM 551 8 7.05e-06 5.49e-02

LSTRS+NLArn 126 10 2.55e-05 5.38e-02

SSM 512 8 1.81e-07 3.75e-02

SSMd 215 8 2.04e-07 2.25e-02

SDP+IRLM 4600 8 2.27e-04 2.08e-01

SDP+NLArn 2415 15 3.15e-06 5.56e-02

Severely ill-posed case

Table 4.5

Image restoration problem: paris, n = 65536.

Eigensolver MVP VEC
‖(H−λI)x+g‖

‖g‖
‖x−xtrue‖
‖xtrue‖ Solution type

IRLM+C 201 7 1.01e-03 1.06e-01 QO

NLArn 89 7 7.99e-04 1.01e-01 BS

zero to working precision. As in section 4.1, in order to generate a more difficult TRS,
no noise was added to the vector b.

The target in this experiment was a relative error ‖x−xtrue‖
‖xtrue‖ of the same level as in

the SSM solution. Thus, the SSM solution was computed first (using the best possible
settings after several trial runs), and then the solutions with the other methods were
computed. Table 4.4 shows the best results (relative error) at the lowest cost (storage
and matrix-vector products) for each method. We report the number of MVPs, the

number of VECs, the optimality measure ‖(H−λI)x+g‖
‖g‖ , and ‖x−xtrue‖

‖xtrue‖ . The settings

used are described in section A.2.3.
The results show that LSTRS+NLArn outperformed all methods in terms of

MVPs. For the mildly ill-posed problem, we obtained savings of approximately 25%
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Original image Blurred and noisy image

IRLM+C Restoration NLArn Restoration

Fig. 4.3. Image restoration problem: paris, n = 65536.

with respect to the second best results (LSTRS+IRLM’s) using 50% more vectors. In
the severely ill-posed case, savings of approximately 40% were obtained with respect
to the second best results (SSMd’s) using 20% more vectors.

4.3. An image restoration problem. In this section, we present results on
a large-scale image restoration problem where the goal is to recover an image from
blurred and noisy data. The problem was constructed in the following way. A dig-
ital photograph of an art gallery in Paris was blurred with the routine blur from
[14]. Then, a random Gaussian noise vector was added to the blurred image. The
regularization problem was as in section 4.1, where A was the blurring operator and
b was the blurred and noisy image generated as above and stored columnwise as a
one-dimensional array. The noise level was 1%. The original image was a digital array
of 256× 256 pixels which gives a TRS of dimension n = 65536.

The performance of LSTRS using the IRLM and NLArn as eigensolvers is shown
in Table 4.5. We observe that LSTRS+NLArn computed a restored image with sim-
ilar accuracy (in 2-norm) to the one computed with LSTRS+IRLM at a much lower
number of MVPs (56% fewer MVPs), using the same number of vectors. Interestingly
enough, LSTRS was able to compute a boundary solution (BS) when using NLArn as
eigensolver, while only a quasi-optimal solution (QO) could be computed when using
the IRLM. A boundary solution is preferred in regularization. The original image, the
blurred and noisy data, and the restored images are shown in Figure 4.3.
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5. Conclusions. LSTRS is a suitable algorithm for solving the large-scale trust-
region subproblem. The main computation in LSTRS is the solution of a sequence
of eigenvalue problems. Since by construction of the algorithm this sequence is con-
vergent, it is highly advantageous to use the information gathered while solving one
eigenproblem in the solution of the next. NLArn can efficiently use all previously
obtained information. In all our experiments, using NLArn instead of the IRLM sig-
nificantly reduced the computational cost. Further improvement in performance could
possibly be obtained by the use of suitable preconditioners within NLArn.

Appendix A. Settings for numerical experiments.

A.1. Regularization problems. LSTRS+IRLM: epsilon.HC = 1e-16 and
epsilon.Int = 0 were used to favor boundary solutions; epsilon.Delta = 1e-2;
lopts.max eigentol = 0.7 was used for problems deriv2, ex.1; heat, mild;
i laplace, ex.1; and i laplace, ex.3; lopts.max eigentol = 0.4 was used for the
rest. Default values were used for the remainder of the parameters. The initial vector
for the first call to the IRLM was v0 = (1, . . . , 1)T /

√
n+ 1. Two vectors were kept at

each implicit restart.
For NLArn, the LSTRS parameters were as before with the exception of

epsilon.Delta = 1e-4 for problem phillips. The tolerance used in NLArn’s stop-
ping criterion was 1e-10. The values of (p, 	, q) with p the maximum dimension of the
search space, 	 the dimension of the initial search space, and q the number of eigen-
vectors kept at restart were as follows: (7, 5, 2) for deriv2, ex.1, (5, 5, 2) for deriv2,
ex.2, (10, 9, 2) for heat, mild, (8, 3, 2) for heat, severe, (9, 6, 2) for i laplace, ex.1,
(10, 3, 2) for phillips, and (10, 5, 2) for the rest.

A.2. Comparison of TRS solvers.

A.2.1. Shifted Laplacian problems. For LSTRS+IRLM, SSM, SSMd, and
SDP+IRLM the number of vectors was 10. In the IRLM, 8 shifts were applied in
each implicit restart. The remaining parameters were as follows.

LSTRS+IRLM: epsilon.Delta = 1e-5 and epsilon.HC = 1e-11 in the stan-
dard case, epsilon.Delta = epsilon.HC = 1e-11 in the hard case, and
lopts.deltaU = ’mindiag’ and lopts.alpha0 = lopts.deltaU. Default values
were used for the remainder of the parameters. The initial vector for ARPACK
was v0 = (1, . . . , 1)T /

√
n+ 1. These choices are the same as in [31].

LSTRS+NLArn: The tolerance used in NLArn’s stopping criterion was 1e-7 in all
cases. In the standard case, epsilon.Delta = 1e-6 and epsilon.HC = 1e-11, and
(p, 	, q) was (10, 2, 10). In the hard case, epsilon.Delta = epsilon.HC = 1e-10,
and (p, 	, q) was (15, 15, 6) for eight of the problems and (15, 15, 7) for the remain-
ing two problems. In both cases, default values were used for the remainder of the
parameters.

SSM, SSMd: ‖(H−λI)x+g‖ was required to be less than or equal to tol = 1e-5

and one of the initial vectors in a relevant Krylov subspace was chosen as the vectors
of all ones.

SDP+IRLM: the tolerance for the duality gap was set to 1e-10 in the standard
case and 1e-9 in the hard case.

SDP+NLArn: in the standard case, the tolerance used in NLArn’s stopping cri-
terion was 1e-10 and (p, 	, q) was (17, 12, 2). In the hard case, SDP+NLArn did not
converge for any of the settings tried.

GLTR: the tolerance for the optimality measure was set to 1e-5 and the required
fraction of the optimal value of the objective function was set to 1. The desired
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optimality level could not be achieved for lower fractions of the optimal objective
value. This was also the case for the other experiments.

A.2.2. UDUT problems. For LSTRS+IRLM, SSM, SSMd, and SDP+IRLM, the
number of vectors was 10 in the easy case and 24 in the hard case. Other parameters
were as follows.

LSTRS+IRLM: epsilon.Delta = 1e-4, epsilon.HC = 1e-10 in all cases. In
the standard case, lopts.deltaU = ’mindiag’, lopts.alpha0 = lopts.deltaU,
lopts.maxeigentol = 0.2, and 8 shifts were applied in each implicit restart. In
the hard case, lopts.deltaU = -4.5, lopts.alpha0 = ’min’, lopts.maxeigentol
= 0.03, and 12 shifts were applied in each implicit restart. The initial vector for
ARPACK was v0 = (1, . . . , 1)T /

√
n+ 1. Default values were used for the remainder

of the parameters.
LSTRS+NLArn: in all cases, the tolerance used in NLArn’s stopping criterion

was 1e-7, epsilon.Delta = 1e-4, and epsilon.HC = 1e-10. In the standard case,
(p, 	, q) was (9, 5, 2). In the hard case, (p, 	, q) was (60, 40, 40) for nine of the problems
and (60, 50, 50) for the remaining problem.

SSM, SSMd: ‖(H − λI)x + g‖ was required to be less than or equal to 1e-5 and
one of the initial vectors in a relevant Krylov subspace was chosen as the vectors of
all ones.

SDP+IRLM: the tolerance for the duality gap was set to 1e-11 in the standard
case and 1e-12 in the hard case.

SDP+NLArn: the tolerance for the duality gap was set to 1e-11 in the standard
case and 1e-12 in the hard case. The tolerance used in NLArn’s stopping criterion
was 1e-10 in the standard case and 1e-7 in the hard case. The values of (p, 	, q) were
(12, 5, 2) in the standard case and (80, 50, 50) in the hard case.

GLTR: the tolerance for the optimality measure was set to 1e-5 in the standard
case and 1e-7 in the hard case. The required fraction of the optimal value of the
objective function was set to 1.

A.2.3. Inverse heat equation. LSTRS+IRLM: lopts.heuristics = 1;
epsilon.Delta = 1e-3 and lopts.maxeigentol = 0.7 for heat, mild and
epsilon.Delta = 1e-2 and lopts.maxeigentol = 0.4 for heat, severe. The ini-
tial vector for ARPACK was v0 = (1, . . . , 1)T /

√
n+ 1. Default values were used for

the remainder of the parameters.
LSTRS+NLArn: the tolerance used in NLArn’s stopping criterion was 1e-10 for

heat, mild and 1e-5 for heat, severe; epsilon.Delta = 1e-7 for heat, mild and
1e-3 for heat, severe; epsilon.HC = 1e-16 was used for both problems. For heat,
mild, (p, 	, q) was (12, 9, 5). For heat, severe, (p, 	, q) was (10, 3, 2).

SSM, SSMd: ‖(H − λI)x + g‖ was required to be less than or equal to 1e-8 for
heat, mild and 1e-7 for heat, severe. One of the initial vectors in a relevant Krylov
subspace was chosen as the vectors of all ones.

SDP+IRLM: the tolerance for the duality gap was set to 1e-7 for the mildly
ill-posed problem and 1e-8 for the severely ill-posed problem.

SDP+NLArn: the tolerance for the duality gap was set to 1e-7 for heat, mild
and 1e-10 for heat, severe. The tolerance used in NLArn’s stopping criterion was
1e-10 for both problems. The values of (p, 	, q) were (8, 4, 2) for heat, mild and
(15, 5, 2) for heat, severe.

A.3. An image restoration problem. LSTRS+IRLM: the eigensolver was the
IRLM combined with a Chebyshev spectral transformation, epsilon Delta = 1e-2
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and epsilon HC = 1e-4. The initial vector was the vector of all ones. Default values
were used for the remainder of the parameters.

LSTRS+NLArn: the LSTRS parameters were as before. For NLArn, the tolerance
in the stopping criterion was 1e-10 and (p, 	, q) was (7, 2, 4).
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