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Abstract.
The minimization of linear functionals defined on the solutions of discrete ill-posed

problems arises, e.g., in the computation of confidence intervals for these solutions. In
1990, Eldén proposed an algorithm for this minimization problem based on a para-
metric programming reformulation involving the solution of a sequence of trust-region
problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-
scale version of this algorithm where a limited-memory trust-region solver is used on
the subproblems. We illustrate the use of our algorithm in connection with an inverse
heat conduction problem.
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Key words: discrete ill-posed problems, confidence intervals, large-scale algorithms,
trust regions.

1 Introduction.

This work is concerned with the minimization of a linear functional defined
on the solution of a discrete ill-posed problem. The mathematical formulation
of this problem takes the following form: let A be an ill-conditioned coefficient
matrix of dimensions m × n, let b be the corresponding right-hand side, and let
w be an arbitrary vector of unit length (‖w‖2 = 1), then compute the solution
xw to the problem

min wTx subject to ‖Ax − b‖2 ≤ ε, ‖x − d‖2 ≤ δ.(1.1)

Here ε and δ are two positive constants that are used to stabilize the compu-
tation of the solution vector x. The vector d contains a priori knowledge of the
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Figure 1.1: The circle and the ellipsoid are defined by ‖x − d‖2 = δ and ‖Ax − b‖2 = ε,
respectively; here d = 0 and the ellipsoid is centered at (1, 1)T. The arrow illustrates the
vector w = (0.8,−0.6)T. The solution to the problem min wTx s.t. ‖Ax − b‖2 ≤ ε is located
at the square – far from the origin – while the solution xw to (1.1) is located at the diamond.

solution, and may be set to the zero vector. Problems of the form (1.1) arise
in the numerical treatment of inverse problems. One important application is
the computation of confidence intervals for the solution of inverse problems [12].
Other applications include the computation of windowed or cumulative profiles
of deconvolved data [13].

A related problem is that of computing stabilized/regularized solutions to
discrete ill-posed problems, e.g., by solving the problem

min ‖Ax − b‖2 subject to ‖x − d‖2 ≤ δ.(1.2)

Here, δ acts as a regularization parameter that controls the “size” of the solution.
The solution to (1.2) is identical to the Tikhonov solution, formally given by

xλ = (ATA + λ2I)−1(ATb + λ2d),(1.3)

for a particular value of the Lagrange parameter λ.
Looking at the two problems (1.1) and (1.2), it may appear at first that

one constraint – namely ‖Ax − b‖2 ≤ ε – would be enough to stabilize the first
problem. However, this is not so; without the constraint ‖x−d‖2 ≤ δ the vector x
can have a large norm, and this happens when w points in a direction for which
the ellipsoid ‖Ax − b‖2 = ε is very elongated. The purpose of the constraint
‖x − d‖2 ≤ δ is thus to ensure that this does not happen – at the expense of
the possible non-existence of a solution (depending on the choice of δ and d).
Figure 1.1 illustrates these points.
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Some algorithms for solving (1.1) are presented in [4, 12, 13]. Our work builds
on an algorithm developed by Eldén [4], based on the reformulation of (1.1)
as a parametric programming problem involving the solution of a sequence of
quadratically constrained least squares (trust-region) problems.

We have developed a framework where the core (trust-region) problems can
be solved, in principle, by any trust-region method which is used in a “black-
box” fashion. However, as we are considering large-scale problems where matrix
factorizations are prohibitive, we are particularly interested in “matrix-free”
trust-region solvers that only require the action of the matrices A and AT

on a vector, given in the form of subroutines for matrix–vector multiplica-
tion. Matrix-free methods for the large-scale trust-region subproblem include
[6–8, 14, 15, 19]. All of these methods, except [6] and [7], have fixed storage
requirements and [7, 8, 14, 15] take into account a special case usually called the
hard case.

In the current implementation of the method MLFIP, we used a MATLAB
version [16] of the limited-memory algorithm LSTRS by Rojas et al. [15] to
solve the trust-region subproblems. Besides the features already mentioned, this
method can efficiently handle the high-degree singularities arising in discrete ill-
posed problems [17]. Results in [16] showed some advantages of using LSTRS
versus [7, 8, 14] for regularization problems. Other methods that have been
reported to perform well on discrete ill-posed problems and that could be used
in MLFIP include [6] and the modification in [1], both based on Lanczos bidiag-
onalization and Gauss quadrature. Note, however, that these methods are not
limited-memory techniques.

Another important issue in our work is the design of a robust implementation
of the algorithm, suited for general use (e.g., in connection with the Regulariza-
tion Tools package [9]). We want to be able to check the existence of a solution
to a given problem, and we want to guarantee that our implementation always
computes a solution if it exists. The resulting method is the algorithm MLFIP
described in this work.

This paper is organized as follows. In Section 2 we briefly study the properties
of the solution of (1.1) from the regularization point of view. In Section 3 we sum-
marize the basic algorithm from [4]. The core of this algorithm is the computation
of the smallest root of a special nonlinear function, and in Section 4 we describe
our algorithm for this problem. In Section 5 we discuss some implementation
issues of the algorithm. Finally, in Section 6 we demonstrate the use of MLFIP
in connection with the sideways heat equation problem.

2 Properties of the solution.

In many applications where problem (1.1) is encountered – e.g., when comput-
ing confidence intervals for regularized solutions – the main goal is to compute
the quantity wTx. Still, x is always computed as a by-product, and the purpose
of this section is to discuss certain properties of this x.
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Figure 2.1: The gray region and the black circles represent the sets S and S∗, respectively,
while the thick line represent all the Tikhonov solutions.

Consider first the left plot in Figure 2.1, which shows the geometry of the
problem for n = 2. The gray region is the set S of “feasible points” given by

S = {x | ‖Ax − b‖2 ≤ ε ∧ ‖x − d‖2 ≤ δ}(2.1)

while the two black circles represent the set

S∗ = {x | ‖Ax − b‖2 = ε ∧ ‖x − d‖2 = δ}.(2.2)

Moreover, the thick solid line represents all the Tikhonov solutions xλ given
by (1.3) for 0 ≤ λ < ∞. Any x that solves (1.1) lies on the boundary of S,
and coincides with a Tikhonov solution only for two particular instances of the
vector w. For all other w, the corresponding x differs from a Tikhonov solution
– hence it is not “optimal” in the sense of balancing the norms ‖x − d‖2 and
‖Ax − b‖2, and it is not necessarily smooth in the sense of being dominated by
the principal singular vectors.

Next consider the right plot in Figure 2.1 which shows a generic L-curve, i.e.,
a log–log plot of the norm of the Tikhonov solution ‖xλ‖2 versus the corre-
sponding residual norm ‖Axλ − b‖2. It is well known (see, e.g., Section 4.6 in
[10]) that for an arbitrary x ∈ R

n, the point (‖Ax − b‖2, ‖x‖2) must lie on or
above the L-curve. The thin vertical and horizontal lines represent vectors x for
which ‖Ax − b‖2 = ε and ‖x − d‖2 = δ, respectively.

Moreover, the gray region represents all the solutions in the set S, while all
the points that represent the solutions in the set S∗ coincide in a single point
(the black circle). We note that all solutions x to (1.1) lie on the upper or right
boundary of the gray region that represents the set S. Again, this illustrates the
fact that the solutions x to (1.1) differ from the Tikhonov solutions xλ.

To illustrate this point further, we consider the test problem shaw from [9]. Let
xexact denote the exact solution, and let b = Axexact+e where the elements of the
perturbation e are from a Gaussian distribution with zero mean and standard
deviation such that ‖e‖2/‖b‖2 = 10−2. We choose d = 0, δ = ‖xexact‖2 and
ε = ‖e‖2. The vector w is the normalized ith basis vector ψi in the discrete cosine
transform for i = 4, 8, 12 and 16. The corresponding four solutions are shown
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Figure 2.2: The exact solution (thin line) and the solution xw to (1.1) for the shaw test problem
and with four different choices of w.

in Figure 2.2. Clearly, x can have a highly oscillatory component, depending on
the choice of w.

The conclusion is that the solution x to (1.1), albeit regularized, cannot be
expected to be smooth in the same manner as the Tikhonov solutions.

3 The basic algorithm.

As shown in [4], problem (1.1) can be reformulated in such a way that the core
computational problem is a parametric programming problem, which is easier to
handle numerically than the original problem. According to Theorem 2.5 in [4],
the minimizer φ = wTx to (1.1) is the smallest solution of the nonlinear equation

L(φ) = ε2,(3.1)

where the function L(φ) is defined as

L(φ) = min
x∈T (φ)

‖Ax − b‖2, T (φ) = {x | ‖x − d‖2 ≤ δ, wTx = φ}.(3.2)

Hence, in order to solve the original problem (1.1) we use a root finder to compute
the smallest root of L(φ)− ε2. Note that the computation of the function values
of L(φ) requires the solution of the parametric programming problem in (3.2).

This problem, in turn, is solved by first removing the linear constraint wTx = φ
and then solving the resulting quadratically constrained least squares problem.
Following [4], we introduce the orthogonal matrix V whose first column is w
(recall that w has unit length):

V = (w, V )
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and we notice that V can be chosen as a single Householder transformation.
Introducing the quantities

A = AV ,

b = b − φAw,

d̄ = V
T
d,

δ
2

= δ2 − (φ − wTd)2,

the solution to the problem in (3.2) is given by

x = V

(
φ
ȳ

)
= φw + V ȳ,

where the vector ȳ solves the following least squares problem with a quadratic
constraint:

min ‖Aȳ − b‖2 subject to ‖ȳ − d̄‖2 ≤ δ.(3.3)

Therefore, the evaluation of L(φ) is equivalent to solving the trust-region sub-
problem (3.3).

4 Computing the smallest root.

Assuming that we can evaluate the function L(φ) accurately, we need a ro-
bust algorithm for computing the smallest root of the nonlinear equation (3.1),
including a reliable test for the existence of such a root. The following theorem
is central.

Theorem 4.1. The function L(φ) given by (3.2) is defined for φ∗ ≤ φ ≤ φ∗,
where

φ∗ = wTd − δ, φ∗ = wTd + δ.

Moreover, L(φ) is continuous and convex in this interval.

Proof. The function L is well defined as long as δ2−(φ−wTd)2 is nonnegative.
It is straightforward to see that this holds only for φ ∈ [wTd − δ, wTd + δ]. The
continuity of L was proved in [4]. We will now show that this function is convex.
First, assume that A has full column rank so that the ellipsoid {x | ‖Ax−b‖2 ≤ ε}
is strictly convex. Take two points, φ1 and φ2, in the interval [φ∗, φ

∗], and let
the corresponding, unique minimizers of L(φ) be denoted by x1 and x2. Define

φτ = (1 − τ)φ1 + τφ2,

for some τ ∈ [0, 1]. Then

x̄ := (1 − τ)x1 + τx2 ∈ T (φτ ),
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since the sphere is convex and wTx is linear in x. It follows that

L(φτ ) = min
x∈T (φτ )

‖Ax − b‖2

≤ ‖Ax̄ − b‖2

≤ (1 − τ)‖Ax1 − b‖2 + τ‖Ax2 − b‖2

= (1 − τ)L(φ1) + τL(φ2).

If A is rank deficient and w is not orthogonal to the null-space of A, then
the minimizers are unique and the above argument still holds. Finally, if w
is orthogonal to the null-space, then the minimizers are not unique. However,
the above proof can be applied to any pair of minimizers. Thus we have proved
that L(φ) is convex. �

It follows from this theorem that, depending on ε, there is either zero, one or
two solutions to the equation L(φ) = ε2. Geometrically, these three situations
correspond to the ball and the ellipsoid not intersecting each other, being tangent
to each other at a single point, and intersecting each other, respectively. The case
where the ball lies exclusively within the ellipsoid can be taken care of initially,
as discussed in Section 5. Hence, we are guaranteed that L(φ∗) > ε2.

Assuming that there are one or two solutions, we can always approach the
smallest root by starting the secant method at φ∗ because the function L(φ) is

Secant initialization: φ(−1) = φ∗ and φ(0) = φ∗ + 0.1δ.
If L(φ(0)) < ε2

φ = robust solver(L(φ) − ε2, φ∗, φ
(0)); return

For k = 1, 2, . . .
compute new secant iterate φ(k);
if L(φ(k)) < ε2

φ = robust solver(L(φ) − ε2, φ(k), φ(k−1)); return;

if φ(k) < φ(k−1) or φ(k) > φ∗ or L(φ(k)) > L(φ(k−1))
compute φ0 = argminL(φ);
if L(φ0) > ε2

return with confidence that no solution exists;
else

φ = robust solver(L(φ) − ε2, φ∗, φ
(k−1)); return;

else
secant update: φ(k−1) = φ(k−2).

if |φ(k) − φ(k−1)| < τ |φ(k)|
φ = φ(k); return.

Figure 4.1: Safeguarded secant algorithm for computing the smallest root of L(φ) − ε2. Here,
τ is a user-specified threshold.
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convex. If the approach fails to find a root, it is likely that no root exists. We
choose the starting iterates for the secant method to be φ∗ and φ∗ + 0.1δ. If
L(φ∗ + 0.1δ) < ε2 then we have a bracket for the smallest root, and we can use
this bracket to compute the root; otherwise we start the secant method, and
stop when the step is small enough.

During the iterations we may encounter an iterate φ such that L(φ) < ε2;
then again we have a bracket for the smallest root.

If the new iterate is outside the interval [φ∗, φ
∗], if the secant step is backwards,

or if we encounter an increasing value of L(φ), then it is likely that no root exists.
In this case we take the effort to compute the minimum of L(φ); if this minimum
is greater than ε2 then we are guaranteed that no solution exists, otherwise we
once again have a bracket for the smallest root.

We summarize our safeguarded algorithm for computing the smallest root of
L(φ)−ε2 in Figure 4.1, where “robust solver(L(φ)−ε2, a, b)” means that we call
a robust solver to find the root in the bracket determined by a and b.

5 Implementation issues.

In this section, we discuss some issues concerning the implementation of the
algorithm MLFIP, described in Sections 3 and 4. First of all, we mention that
the special case where x satisfies ‖Ax− b‖2 < ε and ‖x−d‖2 = δ can be checked
stably and efficiently. The solution to the problem minwTx s.t. ‖x − d‖2 ≤ δ
occurs at the boundary, with x = d − δw; if this x satisfies ‖Ax − b‖2 < ε then
we are done. Hence, our algorithm initially makes this inexpensive check.

A second issue is how to solve the trust-region subproblems required to eval-
uate the function L(φ) in MLFIP. In our implementation, the subproblems are
solved by means of the algorithm LSTRS [15, 16]. This algorithm only requires
multiplications with the matrix A = AV and its transpose. Note that matrix–
vector products with V require only O(n) flops, since V = (w, V ) is a single
Householder transformation. Moreover, LSTRS has fixed storage requirements
and is able to handle the singularities of ill-posed problems [17].

Our initial experiments showed that the evaluation of L(φ) in MLFIP requires
a boundary solution for the trust-region subproblems. Therefore, when calling
LSTRS, it is necessary to give priority to boundary solutions over other kinds
of solutions. Boundary solutions are favored by a proper choice of the tolerances
in the stopping criteria, i.e., tighter tolerances for the undesired kind of solu-
tions and looser for boundary solutions. The LSTRS Matlab software provides
a straightforward way of specifying these tolerances.

At each iteration of LSTRS, the solution of a large eigenvalue problem is re-
quired. In [16], the eigenproblems are solved by the Implicitly Restarted Lanczos
Method (IRLM) [18] through the routine eigs which is the Matlab interface to
ARPACK [11]. For ill-posed problems, most of the matrices arising in LSTRS will
have a large cluster of their smallest eigenvalues very close to zero. Thus, matrix–
vector products with such matrices will annihilate components in the direction
of eigenvector associated with those small eigenvalues and special care must be
taken in this case. This is a concern since LSTRS requires precisely some of the
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smallest eigenvalues and since the IRLM relies on matrix–vector multiplications.
To overcome this situation, a Tchebyshev Spectral Transformation is used to
compute the small eigenvalues. Such transformation has been successfully used
in other contexts. We refer the reader to [17] for more details.

Through the use of the safeguarded root finder outlined in the previous section,
our implementation is robust in the sense that it is able to check for the existence
of a solution. If the minimum of the function L(φ) is positive then we are certain
that there is no solution to problem (1.1). For the robust solver, we use Matlab’s
fzero function whenever a bracket for the desired root is available, and we use
Matlab’s fminbnd function to compute the minimum of L(φ), when required.

6 Numerical examples.

We first illustrate the use of our algorithm by applying it to a problem in
inverse heat conduction from [5]. The sideways heat equation in a quarter plane
geometry can be formulated as a Volterra integral equation of the first kind [2],

∫ t

0

kκ(t − τ)f(τ)dτ = g(t), 0 ≤ t ≤ 1,

where the functions f(t) and g(t) represent the temperature as functions of time
on an inaccessible and an accessible side of an object, respectively. The kernel
function is given by

kκ(t) =
1

2t3/2
√

πκ
exp

[
1

4κt

]
.

The function kκ is a Green’s function for the heat conduction problem, and the
parameter κ is the thermal diffusivity of the object.

The data� are measurements of the temperature g in a cooling experiment
for a particle board. The coefficient κ is equal to 9.55. The integral equation
was discretized using the rectangle rule, which yielded a Toeplitz matrix. Thus,
matrix–vector multiplications with the matrix A can be computed in O(n log n)
operations using the FFT.

Our computations were done in Matlab 6.5. The problem dimensions were m =
n = 256, and we first computed the Tikhonov solution xλ (1.3) using λ = 0.1; this
solution is shown as the solid line in Figure 6.1. The value of λ was chosen as small
as possible such that the solution remained visually monotonically decreasing in
the interval [0, 0.9] (recall that this is a cooling experiment). The behavior of the
solution near t = 1 is nonphysical: the solution should decrease monotonically in
the whole interval. However, using data from the interval [0, 1] it is impossible
to compute any reasonable approximation of the solution for t close to 1, see [3];
therefore, this behavior is expected.

The problem of computing confidence intervals for the Tikhonov solution is
described in [4, 12]. The key idea is to choose the vector w(t0) as samples of
an approximate delta function located at some point t0, and then – ideally
– solve the problem (1.1) with w = ±w(t0) for d = 0, δ equal to the norm

� The data can be obtained from the authors.
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Figure 6.1: The Tikhonov solution xλ (solid line), the measured data (dashed line) and five
confidence intervals computed with d = 0, δ = 389, and ε = 3.2. The weight vectors w are
plotted in the lower graph.

of the exact solution, and ε equal to the approximate error level in the data.
With assumptions on the statistical distribution of the measurement errors it is
possible to quantify the level of confidence of the intervals, see [12, Theorem 1].
In the example we chose w(t0) as samples of a Gaussian function with standard
deviation equal to 0.5. Strictly speaking, we only compute confidence intervals for
the functionals defined by these vectors. However, if the solution x of the ill-posed
problem varies smoothly, then the upper and lower values of the functionals are
realistic estimates of upper and lower values of x itself.

Since the exact solution was not available in our experiment, we used δ =
‖xλ‖2 (in this case approximately 389). The error level of the data was estimated
as follows: A visual examination of the data showed that the errors are below
0.2 (degrees Celsius). As we wanted to allow the residual to be large enough to
accommodate errors of this magnitude, we chose ε =

√
256 · 0.22 = 3.2. We then

used the MLFIP algorithm to compute confidence intervals at t0 = 0.03, 0.3,
0.7, 0.95 and 0.98 as shown if Figure 6.1. We see that for the first four values
of t0, the confidence intervals are quite small, while near t = 1 the confidence
interval becomes larger reflecting the nonphysical nature of the solution there,
and indicating that one should not trust the solution for values of t close to 1.

The tolerance in the secant method (cf. Figure 4.1) was τ = 0.01, and each
call to MLFIP required an average of 12 secant iterations. Each secant iteration
involves one evaluation of the function L(φ) via a call to LSTRS. We used the
default storage parameters, for which LSTRS’s storage requirement is fixed to
9 vectors of length n. Also, using the default convergence parameters, except
epsilon.Delta = 10−3 and epsilon.Int = 0 (in order to enforce a boundary
solution, cf. [16]) LSTRS needs, on average, 230 matrix–vector multiplications to
solve the trust-region problem of computing L(φ). Many of these multiplications
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Figure 6.2: Tikhonov solution sxλ (solid line) and confidence intervals computed with d = 0,
δ = ‖xλ‖2, and ε = ‖Axλ − b‖2, for two choices of λ.

are spent in the Tchebyshev spectral transformation that is required for dealing
with ill-posed problems.

We remark that we can replace the constraint ‖x‖2 ≤ δ with a constraint
‖Lx‖2 ≤ δL involving a semi-norm in which L represents the first derivative
operator, as done in [5]. This can, e.g., be implemented via a standard-form
transformation [10]. The use of the constraint ‖x‖2 ≤ δ here allows us to better
illustrate the usefulness of the confidence intervals.

In our second example, we use MLFIP to compute confidence intervals for
Tikhonov solutions to the shaw test problem from [9]. We compute two Tikhonov
solutions xλ; one with a good choice of λ and one whose value is too small. For
each xλ we then compute confidence intervals, using weight vectors generated
as above, and with parameters ε = ‖Axλ − b‖2 and δ = ‖xλ‖2. The results are
shown in Figure 6.2, and we see that an undersmoothed solution goes hand in
hand with large confidence intervals.

7 Conclusion.

We described MLFIP, a large-scale robust algorithm for the minimization of
linear functionals defined on solutions of discrete ill-posed problems. MLFIP is
based on an algorithm from [4] and is robust in the sense that it checks for
the existence of a solution. The method requires the solution of a sequence of
large-scale trust-region subproblems, which are solved by means of the limited-
memory method LSTRS [15]. We illustrated the effectiveness of MLFIP on the
problem of computing confidence intervals for the solution of an inverse heat
conduction problem with real data. Our limited numerical experience indicates
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that MLFIP is a valuable new tool for the numerical treatment of large-scale
inverse problems.
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