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Outline

@ Introduce Order-Value Optimization problems
@ Review of Algorithms and Convergence results

@ Applications
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Order-Value Optimization (OVO) Problems

Let ;: QCR"—>R, i=1,---,m
Jc{1l,---,m}

For all x € Q, we define i1(x), ia(x), ..., im(x) by

fiu(x) (X) < Fip(x) < - < £ 0 (X)
The OVO problem is:

minimize Zf,-j(x)(x)

x e jed
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Examples

J={m} — )r;nelg max{fi(x), -, fm(x)}
J=A{1} — )rpeigmin{fl(x),--- s fm(X)}
J= {p} — )r;nelsr; fip(x)(X) (VaR—Like)
p
j=1

m
J={p+1,-- m} — min D fig(x)  (CVaR-Like)
Jj=p+1

P
J:{q+1a"'7p} — Lnelg Z ﬁj(x)(x)
Jj=q+1
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Non-smoothness and Many local minimizers

150

)

QcR"
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J = {m} (Minimax)

150

QcR"
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J = {1} (Minimin)

150

QcR"
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J = {p}, (VaR-like)

150

QcR"

In this example, p =3
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J={1,---,p}, (LOVO)

QcR"

In this example, p =2
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J={p+1, -, m}, (CVaR-like)

QcR

In this example, p =3
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J:{q-'-]_’...’p}

QcR"

In this example, g =1,p =4
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Reformulation of CVaR-like

by <by<:---<bp, p<m-1

= bpt1+ -+ by = Minimum (m— p)¢ + Z max{0, b; — &}
ceR i=1

Minimizers= {£ € [bp, bp+1]}

4

Minimize £, )(x) + - + fi ) (%)

Ip+1
x € Q

is equivalent to:

Minimize (m — p)¢ + Z max{0, fi(x) — £}

x€eQ, EeR i=1
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Reformulation of VaR-like

From the same “fact”

Minimize £ (,)(x)

x e

is equivalent to:

Minimize £ (with respect to x € Q and £ € R)

subject to

& minimizes (m — p)§ + Z max{0, fi(x) — &} (wrt &)

i=1
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Consequence for the Reformulations of CVaR-like and
VaR-like

CVaR-like is a Nonlinear Programming problem
Convex if the f; are convex
Linear-Programming if the f; are linear

with many inequality constraints

VaR-like is a Bilevel Programming problem
with many Complementarity Constraints
that come from the KKT conditions of the Lower-Level problem

V.
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Primal method for minimizing CVaR-like

Consider

Minimize (m— p)¢+ >, max{0, fi(x) — &}
xeQ EeR

Use smoothing to deal with of max and ordinary NLP for
minimizing on Q x R.
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Primal Method for Minimizing VaR-like

Given the current point x* € Q (convex) take a sufficient descent
direction d* for all j such that

k k k
fi oy (X)) — € S (X)) < ey (X5) + €
Line-search along d* — x**1 = xk 4+ a d¥
Global convergence to (€)stationary points

Local
Superlinear
Quadratic

Convex subproblems (linear or quadratic constraints)
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Risk Minimization

@ m scenarios

fi(x) =predicted loss caused by decision x € Q under scenario i

f,-p(x)(x) = VaR associated with x

° Z (X) = CVaR associated with x
J p+1
° mi)?ien}zize fi(x)(x) = minimize VaR

@ minimize f. = minimize CVaR
nimi Z -0 (%) minimize CVa
j=p+1
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Low Order-Value Optimization (LOVO)

Define, as always, i1(x), ..., im(x) by:

fapy(X) <o < g(x); p<m

Then, the LOVO problem is:

p
minimize Zf,-j(x)(x)
j=1
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In order to decrease the LOVO function we may “fix”
P

(i(x),- -+ ,ip(x)) and "minimize” Zf,-j(x)(y) with respect to y.
j=1
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gla*) pe===-

gl 1) [mmmmmmm

FYCnn

e —————————

k Xk+1 Xk+2

gy) =Y fipn() h(y) = iy (y)
=1
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Methods for Unconstrained LOVO problems

Line-Search

At iteration k
P
Find a sufficient descent direction for Z (Xk) x)
j=1

take
p

p
Z ok rand) (X + ud) <D (x
j=1

Global Convergence to points x* such that

VY fipey(x) =

Jj=1

<
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Trust-Region methods for LOVO

Typical iteration

Given x¥, the trust region defined by A and a quadratic
P

approximation of Zf,-j(xk)(x):
j=1

Minimize the quadratic approximation on the trust region A

p
o If the reduction of Zf,-j(xk)(x) is sufficiently large with
j=1
respect to the reduction of the quadratic approximation
(Ared > 0.1 Pred) accept the solution of the trust region
subproblem as xk*1.

@ Otherwise, reduce A.
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Convergence of trust-region methods for LOVO

At every limit point x*,

P
VY fipen(x*) = 0.
j=1

Using the true Hessian to define the quadratic approximation:

Local convergence: quadratic
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Fitting with LOVO

Observations Model
LY v & M(x, 1)
s ) = Iy — M(x, )
b | Yo
) ) P-s
— ' T eer
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Constrained LOVO problems

p
MinimizeZﬁ-j(X)(X)
j=1

subject to
h(x) =0, g(x) <0.

Augmented Lagrangian (PHR-Like) (Code Algencan in
www.ime.usp.br/~egbirgin /tango)

A B

Update A, > 0, p. (a4 = max{0, a})

Minimize approx Zf,j ) (X)+
j=1

1
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Convergence of Algencan-LOVO

Global minimization of subproblems

4

Global Minimization

Limit points are either feasible or stationary points of Infeasibility

Feasible limit points that satisfy the CPLD constraint qualification
are "KKT"

Boundedness of penalty parameter J
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Model fitting with Algencan-LOVO

Find the parameters of a Boundary Value Problem fitting a set of
data that contains outliers

p=78 p=75
15 15
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Fitting Nash-Equilibrium Models

Nash-Equilibrium Model:

Given the parameters x € €, the players 1,2,--- , m take ,
simultaneously, decisions y1,- -, ¥m.

Player j takes his/her decision minimizing

fi(x,y1, . ¥j-1,2Z,¥j+1, - ,¥Ym) With respect to z.
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Fitting Nash-Equilibrium Models

Nash-Equilibrium Model:

Given the parameters x € €, the players 1,2,--- , m take ,
simultaneously, decisions y1,- -, ¥m.

Player j takes his/her decision minimizing

fi(x,¥1, -+ . ¥j—1,2, ¥j+1, "+, ¥m) With respect to z.

Inverse Nash-Equilibrium:

.)_/17 o ;}_/m al'e knOWn
Discover the parameters x.
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Fitting Nash-Equilibrium Models

Nash-Equilibrium Model:

Given the parameters x € €, the players 1,2,--- , m take ,

simultaneously, decisions y1,- -, ¥m.
Player j takes his/her decision minimizing
G(XaYL L Yi-1,Z, Y1, 7Ym) with respect to z.

Inverse Nash-Equilibrium:

.)_/17 o ;}_/m al'e knoWn
Discover the parameters x.

LOVO-Inverse-Nash-Equilibrium:

Y1, ,¥m are known but only 90% of these observations are
reliable.

| A

N,
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Fitting Nash-Equilibrium Models

p
Minimize > (Vi) = Vo))
j=1

subject to

Player j minimizes (X, y1,...,Yj—1,2,Yj+1,- -+ Ym)

with respect to z, forall j=1,....m
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Dealing with LOVO constraints

Minimize f(x)
gi(x) <0
s/t x satisfies at least p constraints of the subset

gm(x) <0

2

We define L(x,pu,p) = f(x)+ pz (g,l(x) x) + >
j=1 +

where (gfl(x)(x) + Mpl)i S (g,-,,,(x)(x) + Mpm)i

minimize L(x, p, p)
update u, p J
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LOVO constraints

Example of Feasible Region for p=m —1
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Example of Minimization with LOVO constraints

Find the union of 2 ellipses with smallest area that contain 90% of
the points {P1, -+, Pn}
We have one constraint P; € E; U E5 for each point P;.
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Example of Minimization with LOVO constraints

Given two sets of points A and B, find two ellipses with no
intersection area, that contain, respectively, 80% of the points of A
and 80% of the points of B.
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Topics in computer vision

detection of lines
detection of circles
detection of ellipses
others

Curve detection

[Comparisons with HT, Ransac, QMIDPE, LKS in
Cesar-Andreani-Marcondes-JMM & Silva 2007]
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Lines

Given {(x1,¥1), -, (Xm, ¥m)} find 6 and p such that

Z (g’p (0, p) is minimal,

where £;(0, p) = [xjcosf + y;jsinf — p]> i =1,--- , m,
and £ (9,5)(0,p) < -+ < fi (9,0)(0,p) VO and p>0



Detection of lines
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Detection of lines
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Detection of circles
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Detection of circles
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Detection of circles

NN NN

Lovo

Hough Transform
Least k-square
Ransac

QMDPE
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Current work

Tracking Parametric Curves in video sequences

The tracked curve in frame t-1 should be used as initial solution for
the LOVO problem to be solved in frame t.
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Protein Alignment
Finding common 3D structures of two given proteins.
Evaluating similarity.

Identification of the function of new proteins

Alignment

-
Protein founded in coffee C

plant attacked by disease

2

Aspartato dehidrogenase!
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Protein Alignment

Data: 3D coordinates of C — « atoms of both proteins.

(Available, for example, in Protein Data Bank PDB)
Protein A: (A1,---,An,)

LA
Protein B: (By,- - , Bng)
Ai, Bj € R3



To each admissible bijection between (a subset of) A and (a subset

of) B corresponds a score.

Example admissible bijection ¢

A A A A A
I NN T
B, B, B, B, B, B, B,

1

Non-admissible bijection
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Given fixed relative positions of A and B, the bijection with best
score may be obtained using dynamic programming

/ ? ?
@ o ®
— @ — @
A g ® A o ®
a B T B
T~ ) o
Score = 1.31 Score = 13.42

Changing the relative positions, both “best bijection” and score
change.



ORDER-VALUE OPTIMIZATION AND NEW APPLICATIONS

—fi(x) = score associated with
“bijection i” under the

movement defined by x.

$

Minimize f;(,)(x) (LOVO, p = 1)
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Objective of the alignment:

maximize the score, with respect to bijection and relative position.
Modelling as LOVO:

Score

Bijection 1

Bijection 2

Relative Position

(Rigid Movement of B)
(Rotation and Translation)
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Objective of the alignment:

maximize the score, with respect to bijection and relative position.
Modelling as LOVO:

Score

Bijection 1

Bijection 2

Global Relative Position
Solution (Rigid Movement of B)
(Rotation and Translation)
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LOVOALIGN PACKAGE

www.ime.unicamp.br/~martinez/lovoalign

On-line alignment

of proteins
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www.ime.unicamp.br/~martinez/lovoalign

Aruive  Edtar  Ewibr  Favortos  Feramentas  Aluda

Q- © KRG J - E-Udad
enceregn (] ety camp Erjemartinezfon e e

W - & confiquragies ds Barrar |

vIBr s>

|buscar = Prfar x| [T Tradutor ~ CAVIMal + B Respostas v Exviden + @Meuvshoo! - [eentrar v »

LovoAlign <TG

Home

LovaAlign is a new protein structural alignment package. The methads used for structural
[ Gommtana ] | alanment are based on Low Grder Value Optimization (LOYO) heory. The use o LOVO theory
led to the development of fast convergent algorithms that provide very robust aptimization of
scoring functions.
Nurnerical experiments show that the LOVO algorithrns implemented here pravide the most

veliable optimization of the STRUCTAL alignment while being very fast

[

Home

Simple input parameters can be used to align two structures, a single structure to a whole
database, or to perfarm an alk-on-all database structural alignment

The current version of the LovoAlign software can be downloaded, with source codes, at no cost

&] concl

B Internet
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www.ime.unicamp.br/~martinez/lovoalign

Aruvo  Edtar  Exbir  Favortos  Ferramentas  Ajuda
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LovoAlign <
Home

Online server

The first protein uploaded wil be aligned to the second protein. The method used is the Newton
method with dynamic programming, which pravides the best alignments. No information is saved

in this site.

First protein: | Chain: |
Second protein: | Chain:

Notes

1. If there is more than one structure in the PDB file, separated by the END' or ENDMDL'

keywards, anly the first structure will be considered.

2. Ifthere is more than one chain in the PDB file, no chain is speciied, and the chains are not

separated by a END' keyword, they will be treated as a single molecule and will be considered

for the alignment

3. The output contains all atoms of the original pob file rotated and translated according to the

best alignment obtained for the chain or molecule considered

[

&] conchido B Internet



ORDER-VALUE OPTIMIZATION AND NEW APPLICATIONS

Conclusion

We presented:

The general form of Order-Value functions and OVO problems
Particular cases: VaR-like, CVaR-like, LOVO, ...

Discussion of nonsmoothness and many local minimizers
Nonlinear Programming Reformulations

Primal (trust-region and line-search) methods for
unconstrained OVO problems with and without smoothing

Using LOVO for Nonlinear Regression with Outliers
Constrained LOVO problems

Convergence of Algorithms for Constrained LOVO
Application to Nash-Equilibrium fitting

LOVO constraints

Computer Vision

Protein Alignment
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