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Order-Value Optimization (OVO) Problems

Let fi : Ω ⊂ Rn → R, i = 1, · · · ,m
J ⊂ {1, · · · ,m}

For all x ∈ Ω, we define i1(x), i2(x), . . . , im(x) by

fi1(x)(x) ≤ fi2(x)(x) ≤ · · · ≤ fim(x)(x)

The OVO problem is:

minimize
∑
j∈J

fij (x)(x)
x ∈ Ω
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Examples

J = {m} −→ min
x∈Ω

max{f1(x), · · · , fm(x)}

J = {1} −→ min
x∈Ω

min{f1(x), · · · , fm(x)}

J = {p} −→ min
x∈Ω

fip(x)(x) (VaR-Like)

J = {1, · · · , p} −→ min
x∈Ω

p∑
j=1

fij (x)(x) (LOVO)

J = {p + 1, · · · ,m} −→ min
x∈Ω

m∑
j=p+1

fij (x)(x) (CVaR-Like)

J = {q + 1, · · · , p} −→ min
x∈Ω

p∑
j=q+1

fij (x)(x)
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Non-smoothness and Many local minimizers
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J = {m} (Minimax)



ORDER-VALUE OPTIMIZATION AND NEW APPLICATIONS

J = {1} (Minimin)
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J = {p}, (VaR-like)

In this example, p = 3
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J = {1, · · · , p}, (LOVO)

min
x∈Ω

1

p

p∑
j=1

fij (x)(x)

In this example, p = 2
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J = {p + 1, · · · ,m}, (CVaR-like)

min
x∈Ω

1

m − p

m∑
j=p+1

fij (x)(x)

In this example, p = 3
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J = {q + 1, · · · , p}

min
x∈Ω

1

p − q

p∑
j=q+1

fij (x)(x)

In this example, q = 1, p = 4
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Reformulation of CVaR-like

Fact

b1 ≤ b2 ≤ · · · ≤ bm, p ≤ m − 1

⇒ bp+1 + · · ·+ bm = Minimum (m − p)ξ +
m∑
i=1

max{0, bi − ξ}
ξ ∈ R

Minimizers= {ξ ∈ [bp, bp+1]}

⇓

Minimize fip+1(x)(x) + · · ·+ fim(x)(x)
x ∈ Ω

is equivalent to:

Minimize (m − p)ξ +
m∑
i=1

max{0, fi (x)− ξ}
x ∈ Ω, ξ ∈ R
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Reformulation of VaR-like

From the same “fact”

Minimize fip(x)(x)
x ∈ Ω

is equivalent to:

Minimize ξ (with respect to x ∈ Ω and ξ ∈ R)

subject to

ξ minimizes (m − p)ξ +
m∑
i=1

max{0, fi (x)− ξ} ( wrt ξ)
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Consequence for the Reformulations of CVaR-like and
VaR-like

CVaR-like is a Nonlinear Programming problem
Convex if the fi are convex
Linear-Programming if the fi are linear
with many inequality constraints

VaR-like is a Bilevel Programming problem
with many Complementarity Constraints
that come from the KKT conditions of the Lower-Level problem
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Primal method for minimizing CVaR-like

Consider

Minimize (m − p)ξ +
∑m

i=1 max{0, fi (x)− ξ}
x ∈ Ω, ξ ∈ R

Use smoothing to deal with of max and ordinary NLP for
minimizing on Ω× R.
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Primal Method for Minimizing VaR-like

Given the current point xk ∈ Ω (convex) take a sufficient descent
direction dk for all j such that

fip(xk )(xk)− ε ≤ fj(xk) ≤ fip(xk )(xk) + ε

Line-search along dk → xk+1 = xk + αkdk

Global convergence to (ε)stationary points

Local

Superlinear

Quadratic

Convex subproblems (linear or quadratic constraints)



ORDER-VALUE OPTIMIZATION AND NEW APPLICATIONS

Risk Minimization

m scenarios

fi (x) =predicted loss caused by decision x ∈ Ω under scenario i

fip(x)(x) = VaR associated with x

1

m − p

m∑
j=p+1

fij (x)(x) = CVaR associated with x

minimize fip(x)(x) ≡ minimize VaR
x ∈ Ω

minimize
m∑

j=p+1

fij (x)(x) ≡ minimize CVaR
x ∈ Ω
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Low Order-Value Optimization (LOVO)

Define, as always, i1(x), . . . , im(x) by:

fi1(x)(x) ≤ · · · ≤ fim(x)(x); p ≤ m

Then, the LOVO problem is:

minimize

p∑
j=1

fij (x)(x)
x ∈ Ω



ORDER-VALUE OPTIMIZATION AND NEW APPLICATIONS

Fact
p∑

j=1

fij (x)(y) ≤
p∑

j=1

fij (x)(x)⇒
p∑

j=1

fij (y)(y) ≤
p∑

j=1

fij (x)(x)

⇓

In order to decrease the LOVO function we may “fix”

(i1(x), · · · , ip(x)) and “minimize”

p∑
j=1

fij (x)(y) with respect to y .
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g(y) =

p∑
j=1

fij (xk )(y) h(y) =

p∑
j=1

fij (xk+1)(y)
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Methods for Unconstrained LOVO problems

Line-Search

At iteration k

Find a sufficient descent direction for

p∑
j=1

fij (xk )(x)

take
p∑

j=1

fij (xk+αkd)(xk + αkd) <

p∑
j=1

fij (xk )(xk)
suf

Global Convergence to points x∗ such that

∇
p∑

j=1

fij (x∗)(x∗) = 0
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Trust-Region methods for LOVO

Typical iteration

Given xk , the trust region defined by ∆ and a quadratic

approximation of

p∑
j=1

fij (xk )(x):

Minimize the quadratic approximation on the trust region ∆

If the reduction of

p∑
j=1

fij (xk )(x) is sufficiently large with

respect to the reduction of the quadratic approximation
(Ared ≥ 0.1 Pred) accept the solution of the trust region
subproblem as xk+1.

Otherwise, reduce ∆.
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Convergence of trust-region methods for LOVO

At every limit point x∗,

∇
p∑

j=1

fij (x∗)(x∗) = 0.

Using the true Hessian to define the quadratic approximation:

∇2
p∑

j=1

fij (x∗)(x∗) ≥ 0

Local convergence: quadratic
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Fitting with LOVO

Observations

t y

t1 y1
...

...
tm ym

Model

yj ≈ M(x , tj)

fj(x) = [yj −M(x , tj)]2
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Constrained LOVO problems

Minimize

p∑
j=1

fij (x)(x)

subject to
h(x) = 0, g(x) ≤ 0.

Augmented Lagrangian (PHR-Like) (Code Algencan in
www.ime.usp.br/∼egbirgin/tango)

Minimize approx

p∑
j=1

fij (x)(x)+
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2

+

∥∥∥∥(g(x) +
µ

ρ

)
+

∥∥∥∥2
]

Update λ, µ ≥ 0, ρ. (a+ = max{0, a})
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Convergence of Algencan-LOVO

Global minimization of subproblems
⇓
Global Minimization

Limit points are either feasible or stationary points of Infeasibility

Feasible limit points that satisfy the CPLD constraint qualification
are “KKT”

Boundedness of penalty parameter
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Model fitting with Algencan-LOVO

Find the parameters of a Boundary Value Problem fitting a set of
data that contains outliers
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Fitting Nash-Equilibrium Models

Nash-Equilibrium Model:

Given the parameters x ∈ Ω, the players 1, 2, · · · ,m take ,
simultaneously, decisions y1, · · · , ym.
Player j takes his/her decision minimizing
fj(x , y1, · · · , yj−1, z , yj+1, · · · , ym) with respect to z .

Inverse Nash-Equilibrium:

ȳ1, · · · , ȳm are known
Discover the parameters x .

LOVO-Inverse-Nash-Equilibrium:

ȳ1, · · · , ȳm are known but only 90% of these observations are
reliable.
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Fitting Nash-Equilibrium Models

Minimize

p∑
j=1

(yij (x ,y) − ȳij (x ,y))2

subject to

Player j minimizes fj(x , y1, . . . , yj−1, z , yj+1, . . . , ym)

with respect to z , for all j = 1, . . . ,m
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Dealing with LOVO constraints

Minimize f(x)

s/t x satisfies at least p constraints of the subset


g1(x) ≤ 0

...
gm(x) ≤ 0

We define L(x , µ, ρ) = f (x) + ρ

p∑
j=1

(
gij (x)(x) +

µij
ρ

)2

+

where
(

gi1(x)(x) +
µi1
ρ

)2

+
≤ · · · ≤

(
gim(x)(x) +

µim
ρ

)2

+

minimize L(x , µ, ρ)

update µ, ρ
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LOVO constraints

Example of Feasible Region for p = m − 1
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Example of Minimization with LOVO constraints

Find the union of 2 ellipses with smallest area that contain 90% of
the points {P1, · · · ,Pm}
We have one constraint Pi ∈ E1 ∪ E2 for each point Pi .
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Example of Minimization with LOVO constraints

Given two sets of points A and B, find two ellipses with no
intersection area, that contain, respectively, 80% of the points of A
and 80% of the points of B.
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Topics in computer vision

Curve detection


detection of lines
detection of circles
detection of ellipses
others

[Comparisons with HT, Ransac, QMDPE, LKS in
Cesar-Andreani-Marcondes-JMM & Silva 2007]
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Lines

Given {(x1, y1), · · · , (xm, ym)} find θ and ρ such that
p∑

j=1

fij (θ,ρ)(θ, ρ) is minimal,

where fi (θ, ρ) = [xi cos θ + yi sin θ − ρ]2 i = 1, · · · ,m,

and fi1(θ,ρ)(θ, ρ) ≤ · · · ≤ fim(θ,ρ)(θ, ρ) ∀θ and ρ > 0
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Detection of lines
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Detection of lines
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Detection of circles
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Detection of circles
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Detection of circles
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Current work

Tracking Parametric Curves in video sequences

The tracked curve in frame t-1 should be used as initial solution for
the LOVO problem to be solved in frame t.
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Protein Alignment

Finding common 3D structures of two given proteins.
Evaluating similarity.
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Protein Alignment

Data: 3D coordinates of C − α atoms of both proteins.

(Available, for example, in Protein Data Bank PDB)

Protein A: (A1, · · · ,AnA)

Protein B: (B1, · · · ,BnB )

Ai ,Bj ∈ R3
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To each admissible bijection between (a subset of) A and (a subset
of) B corresponds a score.

Example admissible bijection Φ

Non-admissible bijection

score =
∑

i∈Dom(Φ)

20

1 +
‖Ai−BΦ(i)‖2

5

− 10 gaps
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Given fixed relative positions of A and B, the bijection with best
score may be obtained using dynamic programming

Changing the relative positions, both “best bijection” and score
change.
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−fi (x) = score associated with

“bijection i” under the

movement defined by x.

⇓
Minimize fi1(x)(x) (LOVO, p = 1)
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Objective of the alignment:

maximize the score, with respect to bijection and relative position.

Modelling as LOVO:
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LOVOALIGN PACKAGE

www.ime.unicamp.br/∼martinez/lovoalign

On-line alignment

of proteins
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www.ime.unicamp.br/∼martinez/lovoalign
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www.ime.unicamp.br/∼martinez/lovoalign
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Conclusion

We presented:

The general form of Order-Value functions and OVO problems

Particular cases: VaR-like, CVaR-like, LOVO, . . .

Discussion of nonsmoothness and many local minimizers

Nonlinear Programming Reformulations

Primal (trust-region and line-search) methods for
unconstrained OVO problems with and without smoothing

Using LOVO for Nonlinear Regression with Outliers

Constrained LOVO problems

Convergence of Algorithms for Constrained LOVO

Application to Nash-Equilibrium fitting

LOVO constraints

Computer Vision

Protein Alignment
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