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Motivation

In the course of our applied research concerning fitting Engineering
Models, Protein and Structure Alignments and Risk Analysis we
found the necessity of solving optimization problems in which

Generalized Order-Value functions

are involved.
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Definition

Given a set of functions
i:QCR"Riel=A{1,...,m},
a Generalized Order-Value function
f:Q—R

is a continuous function that, for each x € €, depends on the
values of

{fi()}ies

and of order relations in this set.
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Examples

Suppose that, for all x € Q we define {i1(x),...,im(x)} as a
permutation of {1,..., m} such that

fu ) (X) < Fop(X) <o S0 (%)

Then, we have the following examples of GOV functions:
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(Original) OVO function (VaR)

Given p € {1,..., m} the O-OVO function is

fgvo(x) = fip(x)(x)-

If fi(x) represents the predicted loss associated with the decision x
under the Scenario i, £} ,,(x) is the maximal predicted loss, after
discarding the m — p biggest ones.

This corresponds to the discrete form of the Value-at-Risk (VaR)
risk measure.
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Level sets of £5,,(x1,x2) with m=5,p =4
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CVaR-like OVO Function

& ar(x) is the average of the m — p possible biggest losses under
the decision x.
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Low Order-Value Function

Mu

flovo(x
Jj=1
If f;(x) represents the i — th error of fitting a model that has m

observations with parameters x, /(%) may be the sum of
individual errors, discarding the m — p biggest ones (possible

outliers).
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Multiple Low-Order Value function

We have g empirical “extraction curves” that we want to fit to a
model with common parameters x. For each extraction curve k we
want to discard the (say) 10 percent biggest my — py errors
(perhaps outliers). The corresponding Multiple Lovo function takes

the form:
P1yeesP k
fulovo (%) Z Z f x)
k=1 j=1
(For all k =1,...,q, we have the errors ordered in the form

() < Sy (x).)

k
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Gini

If fi(x) represents the income of an individual (or an homogeneous
group of individuals) under the conditions given by x € Q, the Gini
Coefficient, that measures the inequality of the wealth distribution,
is given by

o (x

m—1
The Gini Coefficient varies between 0 and 1. The 0 value
corresponds to total equality, whereas maximal inequality is
represented by Gini=1. The minimization of f(x) under constrains
x € € corresponds to seeking political or economical decisions x
that aim to reduce income inequality.
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Level sets of Gini
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Friendly Level Sets of a Generalized Order-Value
Function
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Not so Friendly
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Piecewise-Smooth Approach for GOVO

If the functions f; are smooth, Generalized Order-Value functions
are Piecewise Smooth.

This means that f is continuous, and, for each x € €,

f(x) = Fe(x)(x), where F(,) belongs to some “Representation set”
of smooth functions.

Basic Descent Methods choose, at each iteration k, a descent
direction for all the functions in the representation set C(x*). If
no such direction exists, we say that x* is stationary.

Descent methods (first and second-order) converge to stationary
points.
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Descent direction for f
but not for all F; € C'(x)
A

<
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Stationary points with obvious first-order descent
directions

A\ b

Minimum of 100 quadratics



Generalized Order-Value Optimization

Smooth Reformulations

Let a1,...,am € R be such that

a1 <...< am,

and p € {1,..., m}. Consider the problem

Minimize [(m — p)¢ + > (ai =€)l

a;>¢

Then, Minimum = 3°7, a;. (0if p=m.)
And, Minimizers = [ap, apt1]. ([ap,00) if p=m.)
Proof: Look at the slopes.
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as + as + ag
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Minimize CVaR with Reformulation

Recall that CVaR(x) =

B > ot fio (%) ~ Minimumg [(m — p)¢ + >, max{0, (fi(x) — £)}]
B m-—p B m-—p

Therefore, Minimize CVaR with respect to x € Q C R" is:

Mi Mi 0, ( .
11)}1618126 ngle%um [(m—p)+ Z max{ (x) =&}

Minimize [(m — p)§ + Z max{0, (fi(x) — &)}

EER,xEQ -
i=1
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Minimize VaR with Reformulation

Minimize VaR as Mathematical Programming with
Complementarity constraints:

Minimize &
EER,xEQ

subject to

¢ is a minimizer of {(m - p)+ Z max{0, (fi(x) — &)}|.

i=1

If f; linear and Q is a polytope, this is LPLCC. (See survey of
LPLCC by Joaquim Jddice in current issue of TOP).
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MPCC Reformulation of “Minimize
dD(f,-l(X)(x), coog fim(x)(X)”

Minimize ®(&1,...,&m)

&17"'7&-1777)(

subject to

&p is @ minimizer of {(m —p)p + Z max{0, (fi(x) — &p)}H|-

i=1

forallp=1,...,m.
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MPCC Reformulation of “Minimize

dD(f,-l(X)(x), ce fim(x)(X) subject to
8(fipo(x), - - -, fi, 00 (x) < 0"

1\[1n1r§mze D1y, Em)

E1yesm,

subject to

(517"'75!71) >~

and

&p is a minimizer of {(m —p)p + Z max{0, (fi(x) —&p)} -

i=1

forallp=1,....m
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Low Order-Value Function

We define

Mn

p
FLOVO
J=1

(Sum of the p lowest errors)

Minimizing F[50(x) is much simpler than minimizing £5,,(x).
Reason: Fix x and define | = {i1(x),...,ip(x)}. Then, if one finds
y such that > . fi(y) < > fi(x), we will get

Flovo(y) < FLOVO( X).

Practical consequence: For minimizing Ffovo we may use
“ordinary descent methods” for minimizing smooth functions,
disregarding non-smoothness.
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Convergence of Descent methods for minimizing Low
Order-Value functions

If x* is a limit point, there exists a choice of i1(x*),. .., ip(x*) such
that x* is a stationary point of > 2, fi (x+)(x).

(x* is stationary with respect to at least one function in the
representation set.)

This is stronger than saying that x* is stationary in the
Piecewise-Smooth sense (no descent directions for all
“subgradients” ...).

With some additional algorithmic work, we guarantee that x* is
stationary with respect to all the functions in the representation
set.
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Stationary in the PS sense One subgradient is zero

All subgradients are zero
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LOVO constraints

Assume that we have an optimization problem with the constraint
that the p lowest elements of {fi(x),..., fm(x)} are not bigger
than zero.

We decide to use an Augmented Lagrangian method (Algencan) in
a “naive” way for solving the problem.

Therefore, the optimization problem has the constraints:

It turns out that each Algencan subproblem becomes an
“unconstrained” optimization problem where the objective function
is Low Order-Value. Therefore, subproblems can be solved using
ordinary Low Order-Value optimization.

Convergence: Feasible limit points are KKT under weak constraint
qualifications.
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VaR constraint

Assume that f5,,(x) < 0 (VaR < 0) is a constraint of an
optimization problem.
Since, by definition,

ngO(X) = f;'p(x)(x) 2.2 fil(x)(x)a
the constraint £§, ,(x) < 0 is equivalent to

f—il(x)(x) <0,..., f;'p(x)(X) <0.

Therefore, problems with a VaR constraint can be solved as LOVO
constrained problems by Algencan.
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Minimizing VaR

“Minimizing f5,,5(x)" is a nonconvex-nonsmooth optimization
problem.
It is obviously equivalent to:

Minimize z subject to £} ,,(x) < z.

But this is a VaR-Constrained problem, reducible to
LOVO-constrained and solvable by Algencan.
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Minimizing ff,,(x) subject to £3,,(x) < 0 and other
combinations

Equivalent to
Minimize z
subject to
fovo(x) <z and f5,,(x) <0.

Constraints suitable for Algencan:

f}l(x)(x) <z, fip(x)(x) <z,

and
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Example: Minimize the Median with




Generalized Order-Value Optimization

Protein Alignment

Find the maximal common structure to a set of proteins.
(Detecting Evolutive Connections)

Variable x: Spatial positions of the proteins P;.

Objective: Maximize Score(x), where Score measures the best

similarity between sub-structures associated by a “Multijection”.
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Modifies
positions

— . . New positions
Best multijection given the positions



Generalized Order-Value Optimization

Mechanism of LovoAlign

Newton

A
Multijections

Dynamic
Programming

>

N X Positi'ons
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Global Modifications of LovoAlign

1500 protein-alignment problems (from Thesis of P. Gouveia,
2011).

10 T T T T 3
o Lovonlion Mult-Start 1
O €——mMcs 1
- ovoAlign Mulli-Start Ponderada
4
10 £

< LovaAlign Multi-Start Bayesiana

© € LovoAlign Mult-Start Bayesiana Ponderada

LovaAlign Multi-Start Bayesiano Pré-Frocessado

Curva de Pareto

Tempo de execugio gasto pelo método
L]

Lavoalign—————®

2 1 1 L L 1 I 1
60 70 80

a0 40 50
Porcentagem de testes em que o método fathou para episilon = 1.
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Conclusions

Generalized Order-Value Optimization (GOVO) problems
appear in applications to Physics, Chemistry, Engineering and
Economics.

Piecewise Smooth approach: test for nonsmooth optimization
algorithms.

Smooth Reformulations give rise to large MPCC problems.
Reductions to LOVO solve satisfactorily some situations.

LovoAlign is the best developed application so far
implemented. www.ime.unicamp.br/~martinez/lovoalign
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