Some Remarks on Constrained Optimization

Some Remarks on Constrained Optimization

José Mario Martinez

www.ime.unicamp.br/~martinez

Department of Applied Mathematics, University of Campinas, Brazil

2011




Some Remarks on Constrained Optimization

Collaborators:

Roberto Andreani (Unicamp), Ernesto Birgin (USP),
Laura Schuverdt (La Plata), Chris Floudas (Princeton),
Leandro Martinez (USP), Benar Svaiter (IMPA),
Damidn Fernandez (Cérdoba), Gabriel Haeser (Unifesp),
André Luiz Martinez, Emerson Castelani,

Julidn Martinez (Unicamp), Esdras Carvalho (Maringd),
Feodor Pisnitchenko (UFABC), Felipe Bueno (Unicamp),
Natasa Kreji¢ (Novi Sad), Leandro Prudente (Unicamp),
Flavio Yano (ltad), Mario Salvatierra (Amazonas).



Some Remarks on Constrained Optimization

First Remarks

Every branch of Mathematics is applicable, directly or indirectly, to
the “reality”.

Optimization is a mathematical problem with many “immediate”
applications in the non-mathematical world.

Optimization provides a model for real-life problems. We use this
model to take decisions, fit parameters, make previsions,
understand and compress data, detect instability of models,
recognize patterns, planning, finding equilibria, packing molecules,
protein folding and alignment, etc.

We use Optimization Software to solve Optimization problems.
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In Optimization one tries to find the lowest possible values of a
real function f within some domain.

Roughly speaking, this is Global Optimization. Global
Optimization is very hard. For approximating the global minimizer
of a continuous function on a simple region of R” one needs to
evaluate f on a dense set.

As a consequence one usually relies on Affordable Algorithms that
do not guarantee global optimization properties but only local
ones. (In general, convergence to stationary points.) Affordable
algorithms run in reasonable computer time.

Even from the Global Optimization point of view, Affordable
Algorithms are important, since we may use them many times,
perhaps from , with the expectancy
of finding lower and lower functional values in different runs.
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Dialogue between

Algorithm A finds a stationary (KKT) feasible point with objective
function value equal to 999.00 using 1 second of CPU time.
Algorithm B finds the (perhaps non-stationary) feasible point with
objective function value equal to 17.00 using 15 minutes.
Algorithm B says: | am the best because my functional value is
lower than yours.

Algorithm A says: If you give me 15 minutes | can run many times
so that my functional value will be smaller than yours.

Algorithm B says: Well, Just do it!
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Time versus failures

1500 protein-alignment problems (from Thesis of P. Gouveia,
2011).
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Claim

Affordable Algorithms are usually compared on the basis of their
behavior on the solution of a problem with a given initial point.
This approach does not correspond to the necessities of most
practical applications.

Modern (Affordable) methods should incorporate the most
effective heuristics and metaheuristics for choosing initial points,
regardless the existence of elegant convergence theory.



Some Remarks on Constrained Optimization

Algencan

Algencan is an algorithm for constrained optimization based on
traditional ideas (Penalty and Augmented Lagrangian) (PHR).

At each (outer) iteration one finds an approximate minimizer of the
objective function plus a shifted (quadratic) penalty function (the
Augmented Lagrangian). (Talk by E. G. Birgin in this Conference.)
Subproblems, which involve minimization with simple constraints,
are solved using Gencan.

Gencan is not a Global-Minimization method. However, it
incorporates Global-Minimization
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Applying Algencan to

@ Define, for x e R, A e R™ 1 € Rﬁ’r,p > 0:

Al e 5) 11

@ At each iteration, minimize approximately L, subject to x € 2.
@ If ENOUGH PROGRESS was not obtained, INCREASE p.
@ Update and safeguard Lagrange multipliers A € R™, u € Ri.

o=
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Why to safeguard

At the end of outer iteration k Algencan obtains Lagrange
multipliers estimates

NFE = N peh(xK) and p*+ = (uk + prg (x¥)) +

N</pi and 15/ py are the shifts employed at iteration k.

If (unfortunately) px goes to infinity, the only decision that makes
sense is that the shifts must tend to zero. (It does not make sense
infinite penalization with non-null shift.)

A simple way to guarantee that is to impose that the approximation
Lagrange multipliers to be used at iteration k 4+ 1 must be
bounded. We obtain that projecting them on a (large) box.
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When safeguarding is not necessary

If the sequence generated by Algencan converges to the feasible
point x*, which satisfies the Mangasarian-Fromovitz condition
(and, hence, KKT) with only one vector of Lagrange multipliers,
and, in addition, fulfills the second order sufficient optimality
condition, then the penalty parameters remain bounded and the
estimates of Lagrange multipliers converge to the true Lagrange
multipliers.
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Feasibility Results

It is impossible to prove that a method always obtains feasible
points because, ultimately, feasible points may not exist at all.
All we can do is to guarantee that, in the limit, “stationary points
of the infeasibility” are necessarily found.

Moreover, even if we know that feasible points exist, it is
impossible to guarantee that an affordable method finds them.
“Proof”: Run your affordable method with an infeasible problem
with only one stationary point of infeasibility. Your method
converges to that point. Now, modify the constraints in a region
that does not include the sequence generated by your method in
such a way that the new problem is feasible. Obviously, your
method generates the same sequence as before. Therefore, the
affordable method does not find the feasible points.
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Optimality Results

Assume that Algencan generates a subsequence such that
Infeasibility tends to zero.

Then, given ¢ > 0, for k large enough we have the following AKKT
result:

O Lagrange:

HVf(xk) + Vh(xk))\’“r1 + Vg(xk),ukHH <eg;

Q@ Feasibility:
k k
() <&, llg(x*) 1]l <&
© Complementarity:

min{uf ™, —gi(x¥)} <& forall i.
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Stopping Criteria

The Infeasibility Results + the AKKT results suggest that the
execution of Algencan should be stopped when one of the following
criteria is satisfied:

@ The current point is infeasible and stationary for infeasibility
with tolerance e. (Infeasibility of the problem is suspected.)

@ The current point satisfies AKKT (Lagrange + Feasibility +
Complementarity) with tolerance ¢.

Theory: Algencan necessarily stops according to the criterion
above, independently of constraint qualifications.
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Algencan satisfies the stopping criterion and converges to feasible
points that may not be KKT (and where the sequence of Lagrange
multipliers approximation tends to infinity).

Algencan satisfies AKKT in the problem

Minimize x subject to x? = 0.

Other methods (for example SQP) do not. SQP satisfies Feasibility
and Complementarity but does not satisfy Lagrange in this
problem.
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CAKKT

Algencan satisfies an even stronger stopping criterion. The

Complementary Approximate KKT conditon (CAKKT) says that,
eventually:

© Lagrange:

[VF(x) + VAN 4+ Vg (x*)p | < &
@ Feasibility:
(<) < e, lg(x")+]l < &
@ Strong Complementarity:

|u,’-‘+1g;(xk)| <e forall i;

and

N hi(xF)| < e for all i.
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However, CAKKT needs a slightly stronger assumption on the
constraints:

The functions h; and g; should satisfy, locally, a “Generalized
Lojasiewicz Inequality”, which means that the norm of the gradient
grows faster than the functional increment.

This inequality is satisfied by every reasonable function. For
example, analytic functions satisfy GLI.

The function h(x) = x*sin(1/x) does not satisfy GLI. We have a
counterexample showing that Algencan may fail to satisfy the
CAKKT criterion when this function defines a constraint.

Should CAKKT be incorporated as standard stopping criterion of
Algencan?
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Example concerning the Kissing Problem

The Kissing Problem consists of finding n, points in the unitary
sphere of R™ such that the distance between any pair of them is
not smaller than 1.

This problem may be modeled as Nonlinear Programming in many
possible ways.

For ng = 4 and n, = 24 the problem has a solution. Using
Algencan and random initial points uniformly distributed in the
unitary sphere we find this solution in the Trial 147, using a few
seconds of CPU time.

It is also known that, with ng =5 and n, = 40 the problem has a
solution. We used Algencan to find the global solution using
random uniformly distributed initial points in the sphere, and we
began this experiment on February 8, 2011, at 16.00 pm.

In February 9, at 10.52 am, Algencan had run 117296 times, and
the best distance obtained was 0.99043038012718854.

The code is still running.
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Consequences:

O Global Optimization is hard;

@ Stopping Criteria are not merely auxiliary tools on which we
don't like to think about. Refined stopping criterion are
crucial for saving computer time and, thus, having time to
change the strategy. Few research is dedicated to this topic.

© Multistart is a sensible strategy. Many other global strategies
exist. The choice is difficult (and perhaps impossible) because
no strong supporting theories exist.

@ Algencan has global-minimization properties when the
subproblems are solved with global-minimization strategies.
Global simple-constrained (perhaps unconstrained or box-)
optimization is obviously easier than global
general-constrained optimization.
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Algencan and Infeasibility (Thesis of L. Prudente 2011)

You are running Algencan and the sequence seems to be
condemned to converge to an infeasible point. What should you
do?

Alternatives:

© You continue the execution until the maximum number of
iterations is exhausted, because perhaps something better is
going to happen.

@ You stop and try another initial point.

For deciding this question we need better theoretical knowledge
about the behavior of Algencan in Infeasible cases.
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Algencan and Infeasibility

Assume that a subsequence generated by Algencan (solving the
subproblems up to stationarity with €, — 0) converges to the
infeasible point x*.

Consider the Auxiliary Problem:

Minimize f(x) s. t. h(x) = h(x"),g(x) < g(x*)+

Then, for all € > 0, there exists k such that the AKKT stopping
criterion holds at x¥ with respect to the Auxiliary Problem.
Algencan tends to find minimizers suject to the levels of feasibility
of its limit points.
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Minimization with empty feasible region

Minimize 4)(12 + 2x1x0 + 2x22 —22x1 — 2x2 s. t. (x2 — ><12)2 +1=0.
A
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More on Infeasibility

Suppose that one runs Algencan setting, for each subproblem, a
convergence tolerance € that does not tend to zero. For example,
e, = 10 for all k.

Then, the property that every limit point is a stationary point of
infeasibility is preserved. (But the minimization property of f on
infeasibility levels does not.)

Practical consequence: If your Algencan sequence is condemned to
infeasibility, you can get the Infeasible-Conclusion spending a
moderate amount of time on each subproblem.
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When the perfect solution is wrong

You run your Nonlinear Programming solver A with a strict
tolerance for infeasibility, say, 1071°. Your solver converges
smoothly to a AKKT feasible point up to that tolerance and an
unexpectedly low value of the objective function.

You are very happy but your Engineer says that the solution is
completely wrong. (This is the good case; in the bad case your
Engineer believes that it is correct.)

Reason: Unexpected Ill-Conditioning of constraints. The tolerance
10710 is not enough to guarantee that the point is close to the
constraint set. The “shape” of the solution is completely wrong
and the rocket will fall over your head.



Some Remarks on Constrained Optimization

n
Xi—1 + X
Minimize Zx,— s. t. x;= %, i=1,n xo0=Xp+1 = 1.
i=1
Approximate solution (n = 2500) with Norm of Infeasibility ~ 10~°:

A




Some Remarks on Constrained Optimization

Order-Value Optimization (OVO)

[ QCcR"—=Rforalli=1,..., m. We define i1(x), ..., im(x) by

fi(x) < ooy < i (%)

Let pe {1,..., m}. We define:

FP(x) = fi, () (X)-

Interpretation: If f;(x) is the absolute value of the difference
between the i-th observation and the theoretical observation
according to a given model under parameters x then fP(x) is the
maximum error, discarding the m — p worst errors.

If fi(x) is the predicted loss associated with a decision x under the
scenario i, then fP(x) is the maximal possible loss, discarding the
biggest m — p ones. (VaR in Risk Management.)

Optimization problems defined in terms of i1(x), ..., im(x) are
called GOVO (Generalized OVO) problems.
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Level sets of fP(xy, %) with m=5p =4




Some Remarks on Constrained Optimization

Low Order-Value Function

We define

P(x) = fi(x)

j=1
(Sum of the p smallest errors)
Minimizing FP(x) is much simpler than minimizing fP(x).
Reason: Fix x and define | = {i1(x),...,ip(x)}. Then, if one finds
y such that 3. fi(y) < 3 ;) fi(x), we will get FP(y) < FP(x).
Pratical consequence: For minimizing FP we may use ordinary
methods for minimizing smooth functions, disregarding
non-smoothness.
LOVO has been successful in Protein Alignment problems
(Package LovoAlign).
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LOVO constraints

Assume that we have an optimization problem with the constraint
that the p smaller elements of {fi(x),..., fm(x)} is not bigger
than zero.

We decide to use Algencan in a naive way for solving the problem.
Therefore, the optimization problem incorporates the constraints:

fip(x) 0,0, fi (x) <0.

It turns out that each Algencan subproblem becomes an
“unconstrained” optimization problem where the objective function
is Low Order-Value. Therefore, subproblems can be solved using
ordinary smooth optimization.
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VaR constraint

Assume that fP(x) < 0 is a constraint of an optimization problem.

Since
FP(x) = fi 0 (X) = ... = £ (%)
the constraint fP(x) < 0'is equwalent to

f}l(x)(X) < O, ey f,'p(x)(X) < 0.

Therefore, problems with a VaR constraint can be solved as LOVO
constrained problems by Algencan.
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Minimizing VaR

“Minimizing fP(x)" is a nonconvex-nonsmooth optimization
problem.
It is obviously equivalent to:

Minimize z subject to fP(x) < z.

But this is a VaR-Constrained problem, reducible to
LOVO-constrained and solvable by naive Algencan.
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Minimizing f9(x) subject to fP(x) < 0 and other
combinations

Equivalent to
Minimize z

subject to
fP(x) <z f9x)<O0.
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Minimize the Median with
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Final Remarks: Beyond KKT

@ Global Optimization and KKT-like Optimization are parts of
the same problem. Software developers should care with both
problems as being only one.

@ Modelling is part of our problem. We are requested to find
h(x) = 0 (and not | h(x)|| < 1078) even when this is
impossible.

© From a theoretical point of view with potentially practical
applications a challenging research program is the
investigation of convergence to non-KKT points.



