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Nonlinear Programming Problem

NLP

Minimize f (x)

subject to

h(x) = 0, g(x) ≤ 0,

where x ∈ Rn, h(x) ∈ Rm, g(x) ∈ Rp and all the functions are
smooth.
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Finding global minimizers is difficult.

Affordable algorithms for solving large-scale problems usually
guarantee convergence only to “stationary points”.

Affordable algorithms are useful tools in the process of finding
global solutions (Multistart and so on).
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Pointwise Optimality conditions

Stationary points are points that satisfy some necessary
optimality condition.

In Nonlinear Programming, (pointwise) Necessary Optimality
conditions take the form:
The point x∗ is feasible and fulfills the KKT conditions OR
fails to satisfy the XXX constraint qualification.

The strength of a pointwise necessary optimality condition is
associated with the weakness of the constraint qualification.
(Weak constraint qualifications are good.)
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Sequential Optimality conditions

Nonlinear Programming algorithms are iterative. They generate
sequences {xk} that, presumably, converge to stationary points
which, in fact, are never reached exactly.
So, any practical algorithm needs to decide, at each iterate xk

whether xk is an approximate solution (approximate stationary
point) or not. Stopping criterion!.
This motivates to study Sequential Optimality conditions.

A feasible point x∗ satisfies a Sequential Optimality condition
if there exists a sequence that converges to x∗ and fulfills
some property PPP.

Local minimizers satisfy Sequential Optimality conditions.

The fulfillment of PPP may be verified at each iterate of a
practical algorithm.
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Example: Approximate Gradient Projection AGP

A feasible point x∗ satisfies AGP (Mart́ınez-Svaiter 2003) if there
exists a sequence {xk} → x∗ such that the projected gradient
P(xk −∇f (xk)− xk on a linear approximation of the constraints
tends to zero.
AGP is a strong optimality condition: Every local minimizer
satisfies AGP and AGP implies the pointwise optimality condition
KKT or not-CPLD.
(CPLD is a weak constraint qualification that says that positively
linear dependent gradients of active constraints at x∗ remain
linearly dependent in a neighborhood of x∗).
AGP generates the natural stopping criterion for “Inexact
Restoration Methods” and other algorithms for Nonlinear
Programming.
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Approximate KKT condition

We say that a feasible point x∗ satisfies AKKT if there exist
sequences {xk} ⊂ Rn, {λk} ⊂ Rm, {µk} ⊂ Rp such that

lim
k→∞

xk = x∗,

lim
k→∞

‖∇f (xk) +∇h(xk)λk +∇g(xk)µk‖ = 0

and

lim
k→∞

min{−gi (xk), µki } = 0, for all i = 1, . . . , p.
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Recall that a feasible point x∗ satisfies KKT if there exist
λ ∈ Rm, µ ∈ Rp such that

∇f (x∗) +∇h(x∗)λ+∇g(x∗)µ = 0

and
min{−gi (x∗), µi} = 0, for all i = 1, . . . , p.

Consequence: KKT implies AKKT. (Take xk = x∗, λk = λ, µk = µ
for all k).
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Properties of the Approximate KKT condition

Every local minimizer satisfies AKKT (Even if it does not
satisfy KKT). (No constraint qualification is needed.)

AKKT is a strong optimality condition. (It implies KKT or
not-CPLD.)

AKKT generates the natural stopping criterion

‖h(xk)‖ ≤ ε, ‖g(xk)+‖ ≤ ε,

‖∇f (xk) +∇h(xk)λk +∇g(xk)µk‖ ≤ ε
and

|min{−gi (xk), µki }| ≤ ε for all i = 1, . . . , p.

Sequences generated by well-established Nonlinear
Programming algorithms satisfy the Approximate KKT
condition.
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AGP

C−AGP

L−AGP

AKKT

KKT or not−CQ

KKT or not−CPLD

KKT or not−MFCQ

Pointwise and Sequential Optimality Conditions
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Complementary Approximate KKT condition (CAKKT)

CAKKT is a new sequential optimality condition (Andreani,
Mart́ınez, Svaiter, 2010).
We say that a feasible point x∗ satisfies AKKT if there exist
sequences {xk} ⊂ Rn, {λk} ⊂ Rm, {µk} ⊂ Rp

+ such that

lim
k→∞

xk = x∗,

lim
k→∞

‖∇f (xk) +∇h(xk)λk +∇g(xk)µk‖ = 0,

lim
k→∞

gi (x
k)µki = 0, for all i = 1, . . . , p

and
lim
k→∞

hi (x
k)λki = 0, for all i = 1, . . . ,m.
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Properties of the Complementary Approximate KKT
condition

Every local minimizer x∗ satisfies CAKKT. (Even if x∗ is not
KKT.) (Independently of constraint qualifications.)

CAKKT is strictly stronger than AKKT and strictly stronger
than the Approximate Gradient Projection (AGP) Condition.

CAKKT is strictly stronger than the pointwise optimality
condition KKT or not-CPLD.
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CAKKT generates the natural? stopping criterion

‖h(xk)‖ ≤ ε, ‖g(xk)+‖ ≤ ε,

‖∇f (xk) +∇h(xk)λk +∇g(xk)µk‖ ≤ ε,

|gi (xk)µki | ≤ ε for all i = 1, . . . , p

and

|hi (xk)λki | ≤ ε for all i = 1, . . . ,m.

Sequences generated by well-established Nonlinear
Programming algorithms satisfy CAKKT Really?.
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Example: Augmented Lagrangian (Algencan)

At each outer iteration we compute xk , an approximate stationary
point of the augmented Lagrangian

L(x , λk , µk) = f (x) +
ρk
2

[(
h(x) +

λk

ρk

)2

+

(
g(x) +

µk

ρk

)2

+

]
.

We update

λk+1 = λk + ρkh(xk) and µk+1 = (µk + ρkg(xk))+.

We update ρk+1 = γρk+1 (γ > 1) if
max{‖h(xk‖, ‖max(g(xk), µk+1)‖ >
r max{‖h(xk−1‖, ‖max(g(xk−1), µk)‖. Else, we maintain
ρk+1 = ρk .
We project λk+1 and µk+1 on safeguarding boxes.
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Generalized Lojasiewicz Inequality (GLI)

f : Rn → R satisfies GLI at x if

|f (z)− f (x)| ≤ ϕ(z)‖∇f (z)‖

for all z in a neighborhood of x , where ϕ is continuous and
ϕ(x) = 0
Every reasonable (for example, analytic) function f : Rn → R
satisfies GLI.
We will assume that the constraint functions hi , gj of our NLP
problem satisfy GLI at the feasible points
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Augmented Lagrangian Algorithm and CAKKT

Theorem

Assume that x∗ is a feasible limit point of a sequence generated by
the Augmented Lagrangian method and that the GLI assumption
holds at x∗. Then, the associated subsequence (xk , λk+1, µk+1)
fulfills the Complementary Approximate KKT condition.

Consequence: At least one reasonable NLP algorithm converges to
CAKKT points.
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GLI Assumption cannot be eliminated

Sequences generated by the Augmented Lagrangian method
generate Approximate KKT sequences without the GLI condition.
However, for convergence to Complementary Approximate KKT
points, the GLI condition cannot be eliminated.
Example:
Consider the problem

Minimize x subject to h(x) = 0,

where

h(x) = x4 sin

(
1

x

)
if x 6= 0,

and h(0) = 0. h does not fulfill GLI at x = 0.
We are able to define an instance of the algorithm in which the
sequence xk converges to x∗ = 0 and the condition
h(xk)λk+1 → 0 does not hold.
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What happens with other reasonable NLP algorithms?

Essentially, we don’t know.
We performed a good number of numerical experiments with SQP
(Sequential Quadratic Programming) in cases in which the solution
of the problem is not KKT.
We observed that the approximate complementarity condition
λkh(xk)→ 0 generally holds but the Lagrangian condition
∇f (xk) +∇h(xk)λk → 0 does not!
So, contrary to expected, SQP seems to fail to satisfy CAKKT not
because of the “C” but because of the “KKT”.
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Should CAKKT be used as stopping criterion?

(Perhaps Naive) Answer:
If one is using an algorithm that provably generates CAKKT
sequences, CAKKT should be used as stopping criterion since,
eventually, it will be satisfied.
If your algorithm does not generate CAKKT sequences, it seems
better not to use CAKKT at all.


