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“Closed Shell” Electronic Structure Models

Number of Electrons: 2N
Schrödinger Equation: Provides N waves from which the electronic
densities follow. (Unknowns: N functions R3 → R.)
Approximations: Each wave is a Slater-determinant combination of
functions that may be expressed as linear combinations of an AO
(atomic orbital) basis.
C ∈ RK×N : Each column represents the coefficients of each
function on the chosen basis.
Density matrix X = CCT ∈ RK×K .
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Optimization problem

S ∈ RK×K : the symmetric positive definite overlap matrix
associated with the basis.

Minimize f (X ) subject to XSX = X ,X = XT ,Trace(XS) = N.

Taking:

new X = S1/2XS1/2 or new X = LTXL.

the problem reduces to:

Minimize f (X ) subject to X = XT ,X 2 = X ,Trace(X ) = N. (1)
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Feasible points of Problem 1

The feasible points (matrices) of Problem 1 are Euclidean
projection K × K matrices on subspaces of dimension N.

Every feasible X may be written X = CCT , where C has K
rows and N orthonormal columns (basis of subspace).

Every feasible X satisfies ‖X‖2
F = N.

The feasible set of Problem 2 is, in general, smaller than the
set of symmetric matrices that satisfy ‖X‖2

F = N and
Trace (X ) = N. Example: take K = 3,N = 2,

X =

 1 1/2 0
1/2 1/2 0

0 0 1/2

 , XX =

1.25 0.75 0
0.75 1/2 0

0 0 0.25

 6= X .
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SCF fixed point iteration

Given Xk feasible, take Xk+1 as a solution of

Minimize 〈∇f (Xk),X−Xk〉 s.t. X = XT ,X 2 = X , Trace(X ) = N.
(2)

If Xk is a solution of (2) we say that Xk is “aufbau”.
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Computing the Fixed-Point iteration

Theorem

Assume that the columns of C ∈ RK×N form an orthonormal basis
of the subspace generated the eigenvectors associated to N
smallest eigenvalues of ∇f (Xk). Then, Xk+1 = CCT is a solution
of (2).
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Minimizers, Stationary points and Aufbau points
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Aufbaus in a one-dimensional minimization problem
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Global minimizers may not be Aufbau

In this example, the global minimizer is a strict global maximizer
(!) of the linear approximation.

Minimize 2(x − 0.5)2 + y2 subject to (x − 0.5)2 + y2 = 0.25.
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Global minimizers may not be Aufbau

In Problem (1) (Minimize f (X ) subject to X = XT , Trace(X ) = N, X 2 = X ):
Let K = 2, N = 1.

f (X ) = 2(x11 − 1/2)2 + [(x12 + x21)/2]2.

Global Minimizer is X̄ =

(
1/2 −1/2
−1/2 1/2

)
.

Now:

∇f (X̄ ) =

(
0 −1/2
−1/2 0

)
.

The eigenvalues of ∇f (X̄ ) are λmin = −1/2 and λmax = 1/2, corresponding to the
eigenvectors vmin = (1/

√
2, 1/
√

2)T and vmax = (1/
√

2,−1/
√

2)T respectively.
But:

vminv
T
min =

(
1/2 1/2
1/2 1/2

)
6= X̄ .

In fact:

vmaxv
T
max =

(
1/2 −1/2
−1/2 1/2

)
= X̄ .

Therefore, X̄ is not an Aufbau point. (In fact, is “anti-Aufbau”, being equal to
vmaxvT

max , where vmax is eigenvector corresponding to the biggest eigenvalue, and not
the smallest.)

However X̄ is a global minimizer of the problem.



Inexact Restoration Methods for Electronic Structure Calculations

Fixed-Point (SCF-like) Iteration



Inexact Restoration Methods for Electronic Structure Calculations

DIIS acceleration

Step 1. Minimize, with respect to wk , . . . ,wk−p the function

‖wkV (xk) + . . .+ wk−pV (xk−p)‖ (with
∑k

j=k−p wj = 1) where V
is such that ‖V (x)‖ is minimal at a desired solution.
Step 2. Try the acceleration wkx

k + . . .+ wk−px
k−p.
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Levenberg-Marquardt globally convergent method

At each iteration, given the feasible point Xk and starting with
µ = 0, solve:

Minimize 〈∇f (Xk),X − Xk〉+ µ‖X − Xk‖2
F (3)

subject to
X = XT ,X 2 = X ,Trace X = N. (4)

If, at the “trial point”, the “actual reduction” is not sufficient,
increase µ and solve a new subproblem (3-4). Otherwise, accept
Xk+1 = the trial point.
Problem (3-4) may be solved: Take Xtrial = CCT where the
columns of C are orthonormal eigenvectors corresponding to N
smallest eigenvalues of ∇f (Xk)− µXk .
J. B. Francisco, J. M. Mart́ınez, L. Mart́ınez (2004, 2006).
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Challenge

Large-scale problems: N ≈ 5000,K ≈ 10N.
n = K 2 ≈ 2500000000 = 2.5× 109.
Develop “Eigen-free” methods.
Good convergence properties.
Sparsity preserving (with respect to X ∈ RK×K and
∇f (X ) ∈ RK×K ).
The objective of this contribution is to show how Inexact
Restoration can help.
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Inexact Restoration

Nonlinear Programming problem

Minimize f (x) subject to x ∈ Ω ⊂ Rn. (5)

Inexact Restoration Method

Restoration Phase: Obtain yk ∈ Rn “sufficiently” more
feasible than the current point xk .

Minimization Phase: Define T (yk) ⊂ Rn, a “tangent
approximation” to Ω and minimize, approximately, the
Lagrangian on the (non-empty) set T (yk ,Ω), obtaining ztrial .

Compare ztrial with xk with respect to feasibility and
optimality. If ztrial is “better” than xk (merit function, filters)
define xk+1 = ztrial . Else, try a different ztrial “closer” to yk

(trust regions, line searches) and repeat the comparison.
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Characterization of the Tangent Set

Tangent Characterization Lemma

Let Y be feasible, T (Y ) = tangent affine subspace, S(Y ) =
parallel subspace. Then:

S(Y ) = {E ∈ RK×K | E = ET and YE + EY − E = 0}

and

T (Y )

= {Z ∈ RK×K | Z = ZT and Y (Z−Y )+(Z−Y )Y−(Z−Y ) = 0}.

The dimension of S(Y ) is N(K − N).
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Projection on the tangent set

Tangent Projection Lemma

Let Y be feasible. Let A be a symmetric K × K matrix. Then, the
Euclidean (Frobenius) projection of A onto S(Y ) is given by:

PS(Y )(A) = YA + AY − 2YAY .

Consequently, the projection of a symmetric matrix B ∈ RK×K

onto T (Y ) is given by:

PT (Y )(B) = Y + Y (B − Y ) + (B − Y )Y − 2Y (B − Y )Y .
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Eigenvalues in the Tangent Set

Tangent Eigenvalues Lemma

Let Y be feasible, B ∈ T (Y ). Then, B has N eigenvalues greater
than or equal to 1 and K − N eigenvalues less than or equal to 0
(counting multiplicities).
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Local minimizer implies KKT

Optimality Theorem

Let Y∗ be a local minimizer of the optimization problem (1) then
Y∗ satisfies the KKT conditions.
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Equivalences with KKT

KKT Theorem

Let Y∗ be feasible,Y∗ = C∗C
T
∗ , where C∗ ∈ RK×N has orthonormal

columns. The following statements are equivalent:

1 Y∗ satisfies the KKT conditions of the optimization problem
(1).

2 Y∗∇f (Y∗) +∇f (Y∗)Y∗ − 2Y∗∇f (Y∗)Y∗ = 0.

3 Y∗∇f (Y∗) = Y∗∇f (Y∗)Y∗.

4 ∇f (Y∗)Y∗ = Y∗∇f (Y∗)Y∗.

5 Y∗∇f (Y∗)−∇f (Y∗)Y∗ = 0.

6 ∇f (Y∗)C∗ = C∗H for some H ∈ RN×N .

7 C∗ satisfies the KKT conditions of the problem
Minimize f (CCT ) subject to CTC = I .

8 Y∗∇f (Y∗) is symmetric.



Inexact Restoration Methods for Electronic Structure Calculations

Restoration without Diagonalization I

Given Xk+1 in the tangent affine subspace T (Yk), the closest
feasible point to X may be computed using its eigenvalue
decomposition.
Here we describe an eigen-free procedure with the same result.
Take Y 0 = Xk+1 and iterate according to:

Y j+1 = Y j − (2Y j − I )−1[(Y j)2 − Y j ]. (6)

Restoration Theorem

The process (6) converges quadratically to the closest feasible
point to Y 0.
Proof: Use the eigenvalue structure of the tangent point Y 0.

We hope that the iterates preserve the sparsity pattern of Y 0 as
much as possible.
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Restoration without diagonalization II

The iteration (6) “is Newton”. A modified Newton iteration that
preserves local superlinear convergence is:

Y j+1 = 3(Y j)2 − 2(Y j)3. (7)

The iteration (7) converges to the projection matrix that is closest
to Y0 if N eigenvalues of Y0 are in (0.5, 1.366) and K − N
eigenvalues of Y0 are in (−0.366, 0.5).
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Estimation of Lagrange Multipliers

In the Optimality Phase of the Inexact Restoration iteration one
minimizes the Lagrangian function. We need approximations of the
Lagrange multipliers Λk ∈ RK×K .
A standard argument relating the gradient ∇f (Y k) with the
first-order approximation of the constraints leads to the
approximation:

Λk = −(2Yk − I )−1∇f (Yk) + [(2Yk − I )−1∇f (Yk)]T

2
,

Moreover, if Y 2 = Y we have that (2Y − I )−1 = 2Y − I . This
identity suggests that we can also use the approximation

Λk = −[(2Yk − I )∇f (Yk) + [(2Yk − I )∇f (Yk)]T ]/2.
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Implementing the Optimality Phase I

We need to minimize the Lagrangian
L(Z ,Λk) ≡ f (Z ) + 〈Z 2 − Z ,Λk〉 on the tangent affine subspace
given by:

T (Yk)

= {Z ∈ RK×K | Z = ZT and Yk(Z−Yk)+(Z−Yk)Yk−(Z−Yk) = 0}.

Computing a basis of the parallel subspace to T (Yk) is not
possible and direct methods based on the KKT system of this
subproblems are out of question. However, we know how to
compute the projection of ∇L(Z ,Λk) on the parallel subspace
S(Yk). Using this tool we may implement a reduced-basis
conjugate-gradient method for solving the optimality phase
without matrix manipulations.
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Implementing the Optimality Phase II

The Conjugate Gradient process in the tangent space finishes when

An iterate Z j is found such that the projection of ∇L(Z j ,Λk)
is suitably small.

K iterations were completed without convergence.

After the first iteration, we find a negative-curvature direction.

If a negative-curvature direction E is found at the first iteration
the trial step corresponds to a line search along E with a maximal
step size that ensures that ‖Xk+1 − Yk‖F ≤ 3N.
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Globalization

We know how to restore and how to optimize on the tangent space
without eigenvalue calculations. With these tools we essentially
have a locally quadratically convergent Inexact Restoration method
(Birgin-Mart́ınez 2005, Karas-Gonzaga-Ribeiro 2009).
For obtaining global convergence (cluster points are KKT) we need
to adopt a merit function approach (Mart́ınez-Pilotta 2000,
Mart́ınez 2001, Fischer-Friedlander 2009) or a filter
approach(Gonzaga-Karas-Vanti 2003, Karas-Oenig-Ribeiro 2007)
in order to accept or reject the trial point.
If the trial point is rejected, a new trial point “closer to the restored
point Yk” on the tangent affine subspace may be computed using
trust regions or line searches along the segment [Yk ,Ztrial ].
Trust regions are difficult to implement in this very large scale
problem, so we rely in the line-search approach of Fischer and
Friedlander (2009).
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Hartree-Fock Model

In the Hartree-Fock model:

f (Z) ≡ ESCF (Z) = Trace

[
2HZ + G(Z)Z

]
,

where Z is the one-electron density matrix in the atomic-orbital (AO) basis, H is the
one-electron Hamiltonian matrix, G(Z) is given by

Gij (Z) =
K∑

k=1

K∑
`=1

(2gijk` − gi`kj )Z`k ,

gijk` is a two-electron integral in the AO basis, K is the number of functions in the
basis and 2N is the number of electrons. For all i , j , k, ` = 1, . . . ,K one has the
symmetries:

gijk` = gjik` = gij`k = gk`ij .

The matrix F (Z) given by F (Z) = H + G(Z) is known as Fock matrix and we have:

∇ESCF (Z) = 2F (Z).

Since G(Z) is linear, the objective function ESCF (Z) is quadratic.



Inexact Restoration Methods for Electronic Structure Calculations

Example K = 200,N = 20

Number of variables n = K 2 = 40, 000.
Dimension of Tangent Subspaces: 3, 600.
Global IR:
Convergence in 83 iterations.
Computer Time: ≈ 95 seconds.
At the first 70 IR-iterations CG finished detecting “negative
curvature direction” using ≈ 7 CG-iterations.
At the last 13 IR-iterations CG converged using ≈ 150
CG-iterations (58 CG-iterations at the last one).
KKT (Yk∇f (Yk)− (Yk∇f (Yk))T ) at the final iterates:
1.5× 10−3, 5.4× 10−5, 1.5× 10−7, 2.0× 10−9.
Final f = −0.274.
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Example K = 200,N = 20: Other methods

Local IR: Convergence in 273 iterations (130 seconds).
SCF+DIIS: Non-convergence (oscillation) in 1800 iterations (5
minutes). Final f = 14.. Final KKT: 0.15.
Levenberg-Marquardt: Non-convergence in 3590 iterations (5
minutes). However, Final f = −0.274, Final KKT: 3.5× 10−7.
In 2888 iterations LM got the same objective function value with
KKT = 7.5× 10−6.
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Example K = 700,N = 70

Global IR:
Number of variables n = K 2 = 490, 000.
Dimension of Tangent Subspaces: 44, 100.
Convergence in 142 iterations.
Computer Time: ≈ 3 hours.
At the first 131 IR-iterations CG finished detecting “negative
curvature direction” using ≈ 100 CG-iterations.
At the last 11 IR-iterations CG converged using ≈ 240
CG-iterations (163 CG-iterations at the last one).
KKT at the final iterates:
4.0× 10−4, 4.0× 10−4, 4.0× 10−6, 1.2× 10−9.
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Performance Profiles I

1540 problems with K = 50,N = 5.
“Solved” means: Satisfied KKT ≤ 10−8.
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Performance Profiles II

1540 problems with K = 50,N = 5.
“Solved” means: Satisfied “Best f ≤ fmin + 10−6fmin” .
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Performance Profiles III
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Performance Profiles IV
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Chemical Example 1

Figure: Molecule Cr2.
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Chemical Example 2

Figure: Molecule Cr2 distorted.
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Chemical Example 3

Figure: Molecule CrC .
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Chemical Example 4

Figure: Molecule CrC distorted.
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Chemical Example 5

Figure: Molecule Rh2.
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Chemical Example 6

Figure: Molecule Rh2 distorted.
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Chemical Example 7

Figure: Molecule Li9F9.
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Conclusions

1 The Inexact Restoration approach provides a (globally,
quadratically) convergent method for the Closed Shell
electronic calculation problem that does not need eigenvalue
calculations. IR takes full advantage of the problem structure.

2 Moderate number of CG iterations in the optimality phase, in
spite of the large dimension of the tangent space.

3 Eigen-free globally convergent Newton restoration.

4 Its behavior in moderate-size problems is good, when
compared with popular alternatives.

5 These facts encourage the implementation for the huge-scale
case.


