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“Closed Shell” Electronic Structure Models

Number of Electrons: 2N

Schrodinger Equation: Provides N waves from which the electronic
densities follow. (Unknowns: N functions R® — R.)
Approximations: Each wave is a Slater-determinant combination of
functions that may be expressed as linear combinations of an AO
(atomic orbital) basis.

C € RK*N: Each column represents the coefficients of each
function on the chosen basis.

Density matrix X = CCT e RK*K,
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Optimization problem

S € RXXK: the symmetric positive definite overlap matrix
associated with the basis.

Minimize f(X) subject to XSX = X, X = X Trace(XS) = N.

Taking:
new X = SY2XSY2 or new X = LT XL.
the problem reduces to:

Minimize f(X) subject to X = X7, X2 = X, Trace(X) = N. (1)
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Feasible points of Problem 1

@ The feasible points (matrices) of Problem 1 are Euclidean
projection K x K matrices on subspaces of dimension N.

o Every feasible X may be written X = CC', where C has K
rows and N orthonormal columns (basis of subspace).

o Every feasible X satisfies || X||% = N.

@ The feasible set of Problem 2 is, in general, smaller than the
set of symmetric matrices that satisfy || X||2 = N and
Trace (X) = N. Example: take K =3, N = 2,

1 1/2 0 125 075 0
X=11/2 1/2 0 |, xx=[075 1/2 0 |=#X.
0 0 1/2 0 0 025
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SCF fixed point iteration

Given Xj feasible, take X1 as a solution of

Minimize (VFf(Xk), X—Xi) st. X =X X?= X, Trace(X) = N.
(2)

If Xk is a solution of (2) we say that Xj is “aufbau”.
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Computing the Fixed-Point iteration

Assume that the columns of C € RX*N form an orthonormal basis
of the subspace generated the eigenvectors associated to N
smallest eigenvalues of V£(Xk). Then, X411 = CCT is a solution
of (2).
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Minimizers, Stationary points and Aufbau points
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Aufbaus in a one-dimensional minimization problem
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Global minimizers may not be Aufbau

N
W

In this example, the global minimizer is a strict global maximizer
(1) of the linear approximation.

Minimize 2(x — 0.5)? 4 y? subject to (x — 0.5)% + y? = 0.25.
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Global minimizers may not be Aufbau

In Problem (1) (Minimize f(X) subject to X = XT, Trace(X) = N, X2 = X):
Let K=2, N=1.

F(X) = 2(x11 — 1/2)% + [(x12 + x21)/2]%.

o (1/2 —1)2
Global Minimizer is X = (_1/2 1/2 ) .

o (0 —1/2
- (8, ).
The eigenvalues of Vf()_() are Apmin = —1/2 and Amax = 1/2, corresponding to the
eigenvectors vy, = (1/v/2,1/v/2)7 and Vmax = (1/v/2, —1/+/2)7 respectively.

But:
= (3 13) 4%
In fact:
e~ (3 )%
Therefore, X is not an Aufbau point. (In fact, is “anti-Aufbau”, being equal to

VmaxV,;l-,—aXv where vmax is eigenvector corresponding to the biggest eigenvalue, and not
the smallest.)
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Fixed-Point (SCF-like) lteration

1" =6
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DIIS acceleration

Step 1. Minimize, with respect to wy, ..., wix_p the function

Wi V(xK) + ..+ wi—p V(XKP)|| (with Zjlf:k_p w; = 1) where V
is such that ||V/(x)|| is minimal at a desired solution.

Step 2. Try the acceleration wyx* + ...+ Wk_pxk_”.

Try 2.12% — 11257
V(Ik)

V* =21V (zF) — 1.1V (2FP)
V(l’k_p)
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Levenberg-Marquardt globally convergent method

At each iteration, given the feasible point Xj and starting with
=0, solve:

Minimize (VF(Xy), X — X)) 4+ || X — Xi||% (3)

subject to
X =XT,X?=X,Trace X = N. (4)

If, at the “trial point”, the “actual reduction” is not sufficient,
increase 1 and solve a new subproblem (3-4). Otherwise, accept
Xi+1 = the trial point.

Problem (3-4) may be solved: Take Xy = CCT where the
columns of C are orthonormal eigenvectors corresponding to N
smallest eigenvalues of V£ (Xy) — uXk.

J. B. Francisco, J. M. Martinez, L. Martinez (2004, 2006).
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Challenge

Large-scale problems: N = 5000, K ~ 10N.

n = K2 ~ 2500000000 = 2.5 x 10°.

Develop “Eigen-free” methods.

Good convergence properties.

Sparsity preserving (with respect to X € RK*X and
VF(X) € REXK),

The objective of this contribution is to show how Inexact
Restoration can help.
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Inexact Restoration

Nonlinear Programming problem

Minimize f(x) subject to x € Q C R". (5)

Inexact Restoration Method

o Restoration Phase: Obtain y* € R" “sufficiently” more
feasible than the current point x.

o Minimization Phase: Define T(y¥) C R", a “tangent
approximation” to € and minimize, approximately, the
Lagrangian on the (non-empty) set T(y*,Q), obtaining zia.

o Compare zyiy with xk with respect to feasibility and
optimality. If z., is “better” than x* (merit function, filters)
define xkt1 = z,,..;. Else, try a different z;;, “closer” to yk
(trust regions, line searches) and repeat the comparison.
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P 2 (REJECTED)
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Characterization of the Tangent Set

Tangent Characterization Lemma

Let Y be feasible, T(Y) = tangent affine subspace, S(Y) =
parallel subspace. Then:

S(Y)={EecRK*¥ |E=ET and YE+EY — E=0}

and

T(Y)
={ZeR"*K | Z=2T and Y(Z-Y)+(Z-Y)Y—(Z-Y)=0}.
The dimension of S(Y) is N(K — N).
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Projection on the tangent set

Tangent Projection Lemma

Let Y be feasible. Let A be a symmetric K x K matrix. Then, the
Euclidean (Frobenius) projection of A onto S(Y) is given by:

Ps(yy(A) = YA+ AY — 2YAY.

Consequently, the projection of a symmetric matrix B € RK*K
onto T(Y) is given by:

Prov)(B)=Y +Y(B=Y)+(B-Y)Y -2Y(B-Y)Y.
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Eigenvalues in the Tangent Set

Tangent Eigenvalues Lemma

Let Y be feasible, B € T(Y). Then, B has N eigenvalues greater
than or equal to 1 and K — N eigenvalues less than or equal to 0
(counting multiplicities).
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Local minimizer implies KKT

Optimality Theorem

Let Y. be a local minimizer of the optimization problem (1) then
Y. satisfies the KKT conditions.
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Equivalences with KKT

KKT Theorem

Let Y, be feasible, Y, = C,C], where C, € RX*N has orthonormal
columns. The following statements are equivalent:

© Y. satisfies the KKT conditions of the optimization problem
(1).

Y. VF(Ys) + VF(Ye)Ye — 2V VF(Y,)Ye = 0.

Y. VF(Y.) = Yo VE(Y)Ye.

VF(Y.)Ye = YoVF(Ys)Ye.

Y.VF(Y.) = VF(Ys)Ys = 0.

V£(Yys)Cx = CiH for some H € RVXN,

C.. satisfies the KKT conditions of the problem
Minimize f(CCT) subject to CTC = I.

Y. Vf(Y,) is symmetric.

© 000 00O0
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Restoration without Diagonalization |

Given X1 in the tangent affine subspace T(Yk), the closest
feasible point to X may be computed using its eigenvalue
decomposition.

Here we describe an eigen-free procedure with the same result.
Take YO0 = Xk+1 and iterate according to:

Yt = vi 2y — )TH(Y)? - V). (6)

Restoration Theorem

The process (6) converges quadratically to the closest feasible
point to YO.
Proof: Use the eigenvalue structure of the tangent point Y?°.

We hope that the iterates preserve the sparsity pattern of Y0 as
much as possible.
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Restoration without diagonalization Il

The iteration (6) “is Newton”. A modified Newton iteration that
preserves local superlinear convergence is:

Yitt = 3(v9)2 —2(v)3. (7)

The iteration (7) converges to the projection matrix that is closest
to Yp if N eigenvalues of Yy are in (0.5,1.366) and K — N
eigenvalues of Yy are in (—0.366,0.5).
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Estimation of Lagrange Multipliers

In the Optimality Phase of the Inexact Restoration iteration one
minimizes the Lagrangian function. We need approximations of the
Lagrange multipliers Ay € RK*K.

A standard argument relating the gradient V(Y*) with the
first-order approximation of the constraints leads to the
approximation:

Y — DNTIVA(Y) +[(2Ye — NTIVA(Y)] T

A= — )

Moreover, if Y2 =Y we have that (2Y — /)~1 =2Y — /. This
identity suggests that we can also use the approximation

A= =12V = NVE(Yi) + [(2Ye = V(Y] T]/2.
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Implementing the Optimality Phase |

We need to minimize the Lagrangian
L(Z,\¢) = f(Z) + (Z% — Z, \) on the tangent affine subspace
given by:

T(Yk)
={ZeRF*|Z=2Z" and Yi(Z—Yi)+(Z—Y)Ye—(Z-Yi) = 0}.

Computing a basis of the parallel subspace to T(Yj) is not
possible and direct methods based on the KKT system of this
subproblems are out of question. However, we know how to
compute the projection of VL(Z,Ax) on the parallel subspace
S(Yk). Using this tool we may implement a reduced-basis
conjugate-gradient method for solving the optimality phase
without matrix manipulations.



Inexact Restoration Methods for Electronic Structure Calculations

Implementing the Optimality Phase Il

The Conjugate Gradient process in the tangent space finishes when
o An iterate Z/ is found such that the projection of VL(Z/, As)
is suitably small.
@ K iterations were completed without convergence.
@ After the first iteration, we find a negative-curvature direction.
If a negative-curvature direction E is found at the first iteration

the trial step corresponds to a line search along E with a maximal
step size that ensures that || Xxi1 — Yi|[r < 3N.
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Globalization

We know how to restore and how to optimize on the tangent space
without eigenvalue calculations. With these tools we essentially
have a locally quadratically convergent Inexact Restoration method
(Birgin-Martinez 2005, Karas-Gonzaga-Ribeiro 2009).

For obtaining global convergence (cluster points are KKT) we need
to adopt a merit function approach (Martinez-Pilotta 2000,
Martinez 2001, Fischer-Friedlander 2009) or a filter
approach(Gonzaga-Karas-Vanti 2003, Karas-Oenig-Ribeiro 2007)
in order to accept or reject the trial point.

If the trial point is rejected, a new trial point “closer to the restored
point Y}" on the tangent affine subspace may be computed using
trust regions or line searches along the segment [ Yk, Zyial]-

Trust regions are difficult to implement in this very large scale
problem, so we rely in the line-search approach of Fischer and
Friedlander (2009).
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Hartree-Fock Model

In the Hartree-Fock model:

f(Z) = Escr(Z) = Trace {2HZ + G(Z)Z}.

where Z is the one-electron density matrix in the atomic-orbital (AO) basis, H is the
one-electron Hamiltonian matrix, G(Z) is given by

K K
Gi(2) =D (2aijke — giew) Zek,
k=1 ¢=1
gijke is a two-electron integral in the AO basis, K is the number of functions in the
basis and 2/ is the number of electrons. For all i,j, k,£ =1,..., K one has the

symmetries:
8ijke = Bjike = Bijek = 8keij-

The matrix F(Z) given by F(Z) = H + G(Z) is known as Fock matrix and we have:

VEscr(Z) = 2F(2).

Since G(Z) is linear, the objective function Escr(Z) is quadratic.
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Example K = 200, N = 20

Number of variables n = K? = 40, 000.

Dimension of Tangent Subspaces: 3, 600.

Global IR:

Convergence in 83 iterations.

Computer Time: & 95 seconds.

At the first 70 IR-iterations CG finished detecting “negative
curvature direction” using ~ 7 CG-iterations.

At the last 13 IR-iterations CG converged using = 150
CG-iterations (58 CG-iterations at the last one).

KKT (YaVF(Yk) = (YaVF(Yk))T) at the final iterates:
1.5x1073,5.4 x 1072,1.5 x 1077,2.0 x 107°.

Final f = —0.274.
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Example K = 200, N = 20: Other methods

Local IR: Convergence in 273 iterations (130 seconds).
SCF+DIIS: Non-convergence (oscillation) in 1800 iterations (5
minutes). Final f = 14.. Final KKT: 0.15.
Levenberg-Marquardt: Non-convergence in 3590 iterations (5
minutes). However, Final f = —0.274, Final KKT: 3.5 x 107,
In 2888 iterations LM got the same objective function value with
KKT = 7.5 x 107°.
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Example K = 700, N = 70

Global IR:

Number of variables n = K2 = 490, 000.

Dimension of Tangent Subspaces: 44,100.
Convergence in 142 iterations.

Computer Time: = 3 hours.

At the first 131 IR-iterations CG finished detecting “negative
curvature direction” using ~ 100 CG-iterations.

At the last 11 IR-iterations CG converged using ~ 240
CG-iterations (163 CG-iterations at the last one).
KKT at the final iterates:
40x107%4.0x107%,4.0x107°,1.2 x 107°.
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Performance Profiles |

1540 problems with K =50, N = 5.
“Solved” means: Satisfied KKT < 1078.

Parfomance profile; K=50, N=5; Max. tims = 20 sag
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Performance Profiles I

1540 problems with K =50, N = 5.
“Solved” means: Satisfied “Best f < fjn, + 10 %Fnin”

Ferfomance profile; K=50, N=5; Max. time = 20 seg
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Performance Profiles |1l

Parformance profile: K=50, N=5, max fims = 30 seg.
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Performance Profiles IV

Performance profle: K=50, N=5; Max. time = 20 seq.
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Chemical Example 1

Energy relative to mininun found

Cr

] 58 168 156 268 250
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Chemical Example 2

-2 L

' Cr
2 LM

' (Distorted)

-4

=6

log{Energy relative to mininum found}

-]

I L
] 58 168 158 280
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Chemical Example 3

LM |

-4 ]

log{Energy relative to mininum found}

- IR CrC -
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Chemical Example 4

CrC

(Distorted) |

=2

-4

LM

-5 |

log{Energy relative to mininum found}

-8

I I L L L
] 28 48 66 86 168 128 148 168 188 280



Inexact Restoration Methods for Electronic Structure Calculations

Chemical Example 5

.| DIIS

IR |

log{Energy relative to mininum found}

] 1608 208 308 468 588 680
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Chemical Example 6

-4k

2
) '(Distorilzed)l IR k '

-18

log{Energy relative to mininum found}

L L L L I
] 166 280 3688 480 568 66808 760 8ee 9808
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Chemical Example 7

LM

log{Energy relative to mininum found}

LigFy |

] 58 168 156 268 250
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Conclusions

© The Inexact Restoration approach provides a (globally,
quadratically) convergent method for the Closed Shell
electronic calculation problem that does not need eigenvalue
calculations. IR takes full advantage of the problem structure.

@ Moderate number of CG iterations in the optimality phase, in
spite of the large dimension of the tangent space.

© Eigen-free globally convergent Newton restoration.
@ lts behavior in moderate-size problems is good, when
compared with popular alternatives.

© These facts encourage the implementation for the huge-scale
case.



