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The Nonlinear Programming Problem

Minimize f (x)

subject to

h(x) = 0, g(x) ≤ 0,

x ∈ Ω,

where x ∈ Rn, h(x) ∈ Rm, g(x) ∈ Rp.
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PHR Augmented Lagrangian

Definition

Lρ(x , λ, µ) = f (x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2 +

∥∥∥∥(g(x) +
µ

ρ

)
+

∥∥∥∥2]
(a+ = max{0, a}, λ ∈ Rm, µ ∈ Rp

+)

Conceptual Algorithm based on PHR

Outer Iteration

“Minimize”Lρ(x , λ, µ) subject to x ∈ Ω

Update Multipliers λ, µ and Penalty Parameter ρ
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Penalty and Shifting

Penalty Strategy (ρ)

The punishment must be proportional to the constraint violation

Lρ(x , λ, µ) = f (x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2 +

∥∥∥∥(g(x) +
µ

ρ

)
+

∥∥∥∥2]
Shift Strategy (λ/ρ and µ/ρ)

“Better” than increasing the penalty parameter, is to “pretend”
that the tolerance to constraint violation is “stricter” than it is.
Punish with respect to suitably shifted constraint violations.

Lρ(x , λ, µ) = f (x) +
ρ

2

[∥∥∥∥h(x) +
λ

ρ

∥∥∥∥2 +

∥∥∥∥(g(x) +
µ

ρ

)
+
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The PHR approach
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Exploit structure of simple subproblems

The lower-level set may be arbitrary.
Augmented Lagrangian methods proceed by sequential resolution
of simple problems. Progress in the analysis and implementation of
simple-problem optimization procedures produces an almost
immediate positive effect on the effectiveness of Augmented
Lagrangian algorithms. Box-constrained optimization is a dynamic
area of practical optimization from which we can expect
Augmented Lagrangian improvements.
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Global Minimization

Global minimization of the subproblems implies convergence to
global minimizers of the Augmented Lagrangian method. There is
a large field for research on global optimization methods for
box-constraint optimization. When the global box-constraint
optimization problem is satisfactorily solved in practice, the effect
on the associated Augmented Lagrangian method for Nonlinear
Programming problem is immediate.
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Global minimization in practice

Most box-constrained optimization methods are guaranteed to find
stationary points. In practice, good methods do more than that.
Extrapolation and magical steps steps enhance the probability of
convergence to global minimizers. As a consequence, the
probability of convergence to Nonlinear Programming global
minimizers of a practical Augmented Lagrangian method is
enhanced too.
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Non-smoothness and global minimization

The Convergence-to-global-minimizers theory of Augmented
Lagrangian methods does not need differentiability of the functions
that define the Nonlinear Programming problem. In practice, the
Augmented Lagrangian approach may be successful in situations
were smoothness is “dubious”.
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Derivative-free

The Augmented Lagrangian approach can be adapted to the
situation in which analytic derivatives are not computed.
Derivative-free Augmented Lagrangian methods preserve
theoretical convergence properties.
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Hessian-Lagrangian structurally dense

In many practical problems the Hessian of the Lagrangian is
structurally dense (in the sense that any entry may be different
from zero at different points) but generally sparse (given a specific
point in the domain, the particular Lagrangian Hessian is a sparse
matrix). The sparsity pattern of the matrix changes from iteration
to iteration. This difficulty is almost irrelevant for the Augmented
Lagrangian approach if one uses a low-memory box-constraint
solver.
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Hessian-Lagrangian poorly structured

Independently of the Lagrangian Hessian density, the structure of
the KKT system may be very poor for sparse factorizations. This is
a serious difficulty for Newton-based methods but not for suitable
implementations of the Augmented Lagrangian PHR algorithm.
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Reasons for not abandoning the Augmented Lagrangian
approach in practical Nonlinear Programming

Many inequality constraints

Nonlinear Programming problem has many inequality constraints:
many additional variables if one uses slack variables. There are
several approaches to reduce the effect of the presence of many
slacks, but they may not be as effective as not using slacks at all.
The price of not using slacks is the absence of continuous second
derivatives in Lρ. In many cases, this does not seem to be a serious
practical inconvenience
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AL Algorithm with arbitrary lower-level constraints

Initialization

k ← 1, ‖V 0‖ =∞, γ > 1 > τ , λ1 ∈ Rm, µ1 ∈ Rp
+.

Step 1: Solving the Subproblem

Compute xk ∈ Rn an approximate solution of

Minimize Lρk (x , λk , µk) subject to x ∈ Ω.

Step 2: Update penalty parameter and multipliers

Define V k
i = max

{
gi (x

k),−µki
ρk

}
.

If max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞},
define ρk+1 = ρk . Else, ρk+1 = γρk .
Compute λk+1 ∈ [λmin, λmax]m, µk+1 ∈ [0, µmax]p.
Set k ← k + 1 and go to Step 1.
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Convergence to Global Minimizers

Theorem

Assume that the problem is feasible and that each subproblem is
considered as approximately solved when xk ∈ Ω is found such that

Lρk (xk , λk , µk) ≤ Lρk (y , λk , µk) + εk

for all y ∈ Ω, where {εk} is a sequence of nonnegative numbers
that converge to ε ≥ 0.
Then, every limit point x∗ of {xk} is feasible and

f (x∗) ≤ f (y) + ε

for all feasible point y .
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Approximate local solution of the subproblem

General form of Lower-Level Constraints

Ω = {x ∈ Rn | h(x) = 0, g(x) ≤ 0},
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Approximate local solution of the subproblem

Lower-Level εk - KKT Conditions

‖∇Lρk (xk , λk , µk) +

m∑
i=1

vki ∇hi (xk) +

p∑
i=1

uki ∇g i
(xk)‖ ≤ εk ,

uki ≥ 0, g
i
(xk) ≤ εk for all i ,

g
i
(xk) < −εk ⇒ uki = 0 for all i ,

‖h(xk)‖ ≤ εk .
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First-order Choice of Multipliers Estimates

For Equality Upper Level Constraints

λk+1
i = max{λmin,min{λki + ρkhi (x

k), λmax}}

For Inequality Upper Level Constraints

µk+1
i = max{0,min{µki + ρkgi (x

k), µmax}}.
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Positive linear dependence

Positive linear dependent gradients of active constraints

Assume that the feasible set of a nonlinear programming problem
is given by h(x) = 0, g(x) ≤ 0. Let I (x) be the set of indices of
the active inequality constraints at the feasible point x . Let
I1 ⊂ {1, . . . ,m}, I2 ⊂ I (x). The subset of gradients of active
constraints that correspond to the indices I1 ∪ I2 is said to be
positively linearly dependent if there exist multipliers λ, µ such that∑

i∈I1

λi∇hi (x) +
∑
i∈I2

µi∇g i (x) = 0,

with µi ≥ 0 for all i ∈ I2 and
∑

i∈I1 |λi |+
∑

i∈I2 µi > 0.

Otherwise, we say that these gradients are positively linearly
independent.
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Constraint Qualifications

Regularity (LICQ)

The gradients of the active constraints are linearly independent.

STRONGER (MORE RESTRICTIVE) THAN:

Mangasarian-Fromovitz

The gradients of the active constraints are positively linearly
independent.

STRONGER (MORE RESTRICTIVE) THAN:
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CPLD Constraint Qualification

Constant Positive Linear Dependence (CPLD)

If a subset of gradients of active constraints is positive linear
dependent, the same subset of gradients remains linear dependent
in a neighborhood of the point.

(Qi & Wei, Andreani, J.M.M. & Schuverdt)
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Convergence to feasible points

Theorem

Let x∗ be a limit point of {xk}. Then, if the sequence of penalty
parameters {ρk} is bounded, the limit point x∗ is feasible.
Otherwise, at least one of the following possibilities hold:

(i) x∗ is a KKT point of the problem

Minimize
1

2

[ m∑
i=1

hi (x)2 +

p∑
i=1

[gi (x)+]2
]

subject to x ∈ Ω.

(ii) x∗ does not satisfy the CPLD constraint qualification
associated with Ω.
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Convergence to KKT points

Theorem

Assume that x∗ is a feasible limit point of {xk} that satisfies the
CPLD constraint qualification related to set of all the constraints.
Then, x∗ is a KKT point of the problem.
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Boundedness of Penalty Parameter

Conditions under which ρk is bounded

limk→∞ xk = x∗ and x∗ is feasible.

LICQ holds at x∗. (⇒ KKT ).

The Hessian of the Lagrangian is positive definite in the
orthogonal subspace to the gradients of active constraints.

λ∗i ∈ (λmin, λmax), µ∗j ∈ [0, µmax) for all i , j .

For all i such that gi (x
∗) = 0, we have µ∗i > 0. (Strict

complementarity in the upper level.)

There exists a sequence ηk → 0 such that
εk ≤ ηk max{‖h(xk)‖, ‖V k‖} for all k = 0, 1, 2 . . ..
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Second Order Optimality Condition

Weak Second Order Condition (SOC)

The Hessian of the Lagrangian is positive semi-definite on the
orthogonal subspace to the gradients of active constraints.

Regularity and SOC

Text books: At a local minimizer:

LICQ ⇒ SOC
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Second Order Optimality Condition

May LICQ be weakened?

to Mangasarian-Fromovitz?

Answer: Mangasarian-Fromovitz is not enough. Counterexample
Polyak, Anitescu.
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Second Order Optimality Condition

Weak Constant Rank Condition WCR

We say that WCR is satisfied at the feasible point x∗ if the rank of
the matrix formed by the gradients of the active constraints at x∗

remains constant (does not increase) in a neighborhood of x∗.

Theorem

At a local minimizer
Mangasarian-Fromovitz + WCR ⇒ SOC
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Consequences for the Augmented Lagrangian Method

Assume that we implement the Augmented Lagrangian method
(with Ω = Rn) in such a way that, at the solutions of the
subproblems, we have:

Stopping Criterion at the Subproblems

vT∇2Lρk (xk , λk , µk)v ≥ −εk‖v‖2

for all v ∈ Rn.

where

∇2

[
max

(
0, gi (x) + µi

ρ

)]2
= ∇2

(
gi (x) + µi

ρ

)2

if gi (x) + µi
ρ = 0,
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Augmented Lagrangian and SOC

Theorem

If the Augmented Lagrangian Method with the approximate second
order stopping criterion on the subproblems converges to a feasible
point x∗ that satisfies Mangasarian-Fromovitz and
Weak-Constant-Rank, then x∗ satisfies the second order condition
SOC.
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Derivative-free Augmented Lagrangian

(Ω = a box)

Stopping Criterion for the Subproblems

Lρk (xk , λk , µk) ≤ Lρk (xk ± εkej , λk , µk)

for all j = 1, . . . , n, whenever xk ± εkej ∈ Ω.
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Derivative-free Augmented Lagrangian

Results

Every limit point is a Stationary point of the quadratic
infeasibility measure

Every feasible limit point that satisfies CPLD is stationary

Under “additional assumptions”, boundedness of penalty
parameters.
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Example of LA with very structured lower-level
constraints

Find the point in the Rectangle but not in the Ellipse such that the
sum of the distances to the polygons is minimal.
Upper-level constraints: (All points) /∈ Ellipse
Lower-level constraints: Central Point ∈ Rectangle, Polygon Points
∈ Polygons.
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Example of LA with very structured lower-level
constraints

1,567,804 polygons
3,135,608 variables, 1,567,804 upper-level constraints, 12,833,106
lower-level constraints
Convergence in
10 outer iterations, 56 inner iterations, 133 function evaluations,
185 seconds

Reasons for this behavior

We use, in this case, the Spectral Projected Gradient method SPG
for convex constrained minimization for solving the subproblems,
which turns out to be very efficient because computing projections,
in this case, is easy.
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ALGENCAN

Algencan is the Augmented Lagrangian algorithm with lower
level constraints x ∈ Ω, where Ω is a box.

Solver for the subproblems: GENCAN

The box-constraint solver Gencan uses:

Active set strategy

Inexact-Newton within the faces

Spectral Projected Gradient (SPG ) to leave faces

Extrapolation and Magical steps.
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“Modest Claim” about Algencan

Algencan is efficient when:

Many inequality constraints

Hard KKT-Jacobian structure
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Example: Hard-Spheres problem

Find np points on the unitary sphere of Rnd maximizing the
minimal pairwise distances.

NLP Formulation

Minimize pi ,z z
subject to ‖pi‖2 = 1, i = 1, . . . , np,

〈pi , pj〉 ≤ z , i = 1, . . . , np − 1, j = i + 1, . . . , np,

where pi ∈ Rnd for all i = 1, . . . , np. This problem has nd × np + 1
variables, np equality constraints and

np × (np − 1)/2

inequality constraints.
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Hard-Spheres problem, nd = 3, np = 24
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Behavior of Algencan in Hard-Spheres

Hard-Spheres (3,162)

Final infeasibility Final f Iterations Time

Algencan 3.7424E-11 9.5889E-01 10 40.15
Ipopt 5.7954E-10 9.5912E-01 944 1701.63
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Enclosing-Ellipsoid problem

Find the Ellipsoid with smallest volume that contains np given
points in Rnd .

Minimize lij −
∑nd

i=1 log(lii )

subject to (pi )TLLTpi ≤ 1, i = 1, ..., np,
lii ≥ 10−16, i = 1, ..., nd ,

where L ∈ Rnd×nd is a lower-triangular matrix. The number of
variables is nd × (nd + 1)/2 and the number of inequality
constraints is np (plus the bound constraints).
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Enclosing Ellipsoid
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Bratu

Discretized three-dimensional Bratu-based problem:

Minimize u(i ,j ,k)

∑
(i ,j ,k)∈S [u(i , j , k)− u∗(i , j , k)]2

subject to φθ(u, i , j , k) = φθ(u∗, i , j , k), i , j , k = 2, . . . , np − 1,

where
φθ(v , i , j , k) = −∆v(i , j , k) + θev(i ,j ,k),

and

∆v(i , j , k) =
v(i ± 1, j , k) + v(i , j ± 1, k) + v(i , j , k ± 1)− 6v(i , j , k)

h2
,

The number of variables is n3p and the number of equality
constraints is (np − 2)3. We set θ = −100, h = 1/(np − 1) and
|S | = 7. This problem has no inequality constraints.
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Characteristics of Hard-Spheres, Enclosing-Ellipsoid and
Bratu

Hard-Spheres and Enclosing-Ellipsoid have many inequality
constraints.
Bratu-based problem has a difficult KKT structure.
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Enclosing Ellipsoid test

6 variables, 20000 inequality constraints.

Enclosing-Ellipsoid (3,20000)

Final infeasibility Final f Iterations Time

Algencan 8.3449E-09 3.0495E+01 28 1.90
Ipopt 1.1102E-15 3.0495E+01 41 9.45
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Bratu-based test

np = 20, n = 8000, number of constraints: 5832.

Bratu-based (20, θ = −100, #S = 7)

Final infeasibility Final f Iterations Time

Algencan 6.5411E-09 2.2907E-17 3 5.12
Ipopt 2.7311E-08 8.2058E-14 5 217.22
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Low-Precision (10−4) Performance-Profiles
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Dealing with slow convergence

In spite of the “modest claims” one wishes that Algencan
should behave reasonably in “all” the problems.
However: ultimate convergence of the AL method may be slow.
Algencan may converge slowly in problems where “Newton’s
method” applied to the KKT system is very effective.
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Remedy: Newton-acceleration of Algencan

Algencan + Newton

Run Algencan up to some modest precision.

Run a moderate number of Newton-KKT iterations.

Repeat.

Convergence

Global as Algencan , Fast as Newton .
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Non-standard Problems

Bilevel

Minimize f (x , y)

subject to
y solves P(x),

where P(x) is a constrained nonlinear programming problem.

Augmented Lagrangian Strategy:

Minimize f (x , y)

subject to
y solves P(x , ρk , λ

k , µk),

where P(x , ρ, λ, µ) is an unconstrained nonlinear programming
problem.
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Non-standard Problems

Problem

Minimize f (x) subject to “At least q constraints are satisfied”

Augmented Lagrangian Strategy:

Outer iteration:

Minimize f (x) +
ρ

2

[∑
q smaller

(
gi (x) +

µi
ρ

)2

+

]
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Conclusions

There are many reason for not abandoning classical PHR
Augmented Lagrangian methods.

The Augmented Lagrangian Method with arbitrary lower-level
constraints admits a nice global optimization theory, without
“assumptions on the algorithm” and weak constraint
qualifications (even second-order)

Taking advantage of good algorithms for lower-level
constraints may be very effective.

Algencan (Ω= a box) is effective with many inequality
constraints and bad KKT-Jacobian structure.

Algencan can be accelerated with Newton-KKT.

Non-standard problems

See the Tango site www.ime.usp.br/∼egbirgin/tango.
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